O

VERISIGN®

VERISIGN BUNDLE EPP SDK
PROGRAMMER’S GUIDE

Version 1.27.0
October 10, 2024

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

® pagei

COPYRIGHT NOTIFICATION

Copyright © 2019-2024 VeriSign, Inc. All rights reserved.
VERISIGN PROPRIETARY INFORMATION

This document is the property of VeriSign, Inc. Information contained herein may include trade secrets and confidential information belonging
to VeriSign Inc.. Unauthorized disclosure without the express written consent of VeriSign, Inc. is prohibited. It may be used by recipient
only for the purpose for which it was transmitted and will be returned upon request or when no longer needed by recipient. It may not be

copied or communicated without the prior written consent of VeriSign, Inc.

DISCLAIMER AND LIMITATION OF LIABILITY

VeriSign, Inc. has made efforts to ensure the accuracy and completeness of the information in this document. However, VeriSign, Inc. makes
no warranties of any kind (whether express, implied or statutory) with respect to the information contained herein. VeriSign, Inc. assumes

no liability to any party for any loss or damage (whether direct or indirect) caused by any errors, omissions or statements of any kind
contained in this document. Further, VeriSign, Inc. assumes no liability arising from the application or use of the product or service
described herein and specifically disclaims any representation that the products or services described do not infringe upon any existing or
future intellectual property rights. Nothing herein grants the reader any license to make, use, or sell equipment or products constructed in
accordance with this document. Finally, all rights and privileges related to any intellectual property right described in this document are
vested in the patent, trademark, or service mark owner, and no other person may exercise such rights without express permission, authority,
or license secured from the patent, trademark, or service mark owner.

VeriSign Inc. reserves the right to make changes to any information herein without further notice.

NOTICE AND CAUTION
Concerning U.S. Patent or Trademark Rights

The inclusion in this document, the associated on-line file, or the associated software of any information covered by any patent, trademark, or
service mark rights will not constitute nor imply a grant of, or authority to exercise, any right or privilege protected by such patent,
trademark, or service mark. All such rights and privileges are vested in the patent, trademark, or service mark owner, and no other person
may exercise such rights without express permission, authority, or license secured from the patent, trademark, or service mark owner.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page ii

Change Log

Author(s) Date Revision Description
James F. Gould 05/30/2013 1.0.0 Initial Revision
James F. Gould 08/14/2013 1.1.0 Updated “Figure 24 — Domain Create in Sunrise Create Form

Example” to the EPPEncodedSignedMark class and added
description of changes in version 1.1.0.

James F. Gould 09/04/2013 1.1.1 Updated the changes for version 1.1.0, and Related Domain
Extension section, to support the Domain Info Form and the
Related Info Form of the Related Domain Extension. Also
added support for the multiple related domain transform
commands to the Related Domain Extension.

James F. Gould 05/01/2014 1.2.0 Updated the Changes from Previous Version section to include
the information for the 1.2.0, 1.3.0, and 1.4.0 releases.

James F. Gould 04/07/2015 1.3.0 Added the new extensions including: Change Poll Mapping
(changepoll), Registry Fee Extension (fee), Allocation Token
Extension (allocationtoken), IDN Map Extension (idnmap), and
the IDN Table Mapping (idntable). The Launch Phase
Extension (launch) was updated to be compliant with draft-ietf-
eppext-launchphase-05. Also added the sublD attribute to the
Suggestion Mapping (suggestion).

James F. Gould 11/2/2015 1.4.0 Added the new extensions including: Verification Code
Extension (verificationcode) and China Name Verification

Mapping (vsp).

James F. Gould 11/10/2015 141 Bumped up the reference of the Verification Code Extension to
version 02.

James F. Gould 12/3/2015 1.5.0 Added information for the 1.7.0 release of the EPP SDK

James F. Gould 2/18/2016 1.8.0 Added information for the 1.8.0 release of the EPP SDK.

James F. Gould 3/25/2016 1.9.0 Updated some of the SSLProtocol configuration description.

James F. Gould 4/20/2016 1.10.0 Added support for draft-brown-epp-fees-07.

James F. Gould 10/7/2016 1.11.0 Added support for session pool client transaction identifier

generator configuration.

James F. Gould 12/16/2016 1.12.0 Add description of supporting relaxed contact validation and
the use of the new optional EPP.Contact.RelaxedValidation
epp.config property.

James F. Gould 2/16/2017 1.12.1 Add description of supporting enabling or disabling the use of
an Entity Resolver with the use of the new optional
EPP.UseEntityResolver epp.config property.

James F. Gould 8/1/2017 1.12.2 Added description of the optional EPP.SendReceivelogger
property for setting the logger used for sent and received
packets.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page iii

James F. Gould

James F. Gould

James F. Gould

James F. Gould

James F. Gould
James F. Gould

James F. Gould

James F. Gould
James F. Gould

James F. Gould

James F. Gould

James F. Gould

James F. Gould

James F. Gould

James F. Gould

James F. Gould

James F. Gould

James F. Gould

James F. Gould

James F. Gould

James F. Gould

4/16/2018

5/1/2018

7/2/2018

8/6/2018

9/4/2018
9/7/2018

9/24/2018

10/15/2018
10/25/2018

1/17/2019

2/20/2019

5/13/2019

6/19/2019

6/24/2019

12/13/2019

6/19/2020

6/22/2020

9/2/2020

9/28/2020

12/15/2020

4/19/2021

1

1

1.

1.

1.

1

1.

1

1

.13.0

13.1

13.2

133

13.4

13.5

.13.6

13.7

13.8

13.9

.13.10

1311

.14.0

141

15.0

.16.0

17.0

.18.0

.19.0

1.20.0

1.21.0

Added support and configuration settings associated with the
Login Security EPP Extension.

Replaced references of reseller and resellerext to org and
orgext.

Added definition of the optional EPP.PollMessageFilter
property.

Added the definition of the EPP.RegistryPolicyAdapters
property.

Removed WhoWas and Suggestion for the SDK.
Updated to support draft-ietf-regext-epp-fees-13.

Added support for draft-gould-regext-login-security-policy-00
and updated some of the referenced draft versions.

Added support for draft-ietf-regext-validate-04.
Added support for draft-gould-carney-regext-registry-04.

Updated some of the referenced drafts and RFCs. Also
updated the change log for the 1.11.0 release.

Updated the 1.11.0 change log to include support for Java 11
and to reflect the change from base support of Java 7 to Java
8.

Revised the version of the supported Internet Drafts and RFC’s
including the registry fee extension, the change poll extension,
the organization mapping, and the organization extension.

Added references to the 1.12.0 release.

Made corrections to the Introduction and other small
corrections elsewhere.

Updated documentation on the build, based on the
replacement of Ant with Gradle.

Configuration setting changes based on conversion from
Apache Commons Pool 1 to 2.

Replaced PoolMan with the use of Apache Commons Pool 2
for the Parser and Transformer pools.

Added the EPP.ReadTimeOut property

Added the definition of the
EPP.SessionPool.minAbsolute Timeout,
EPP.SessionPoo.maxAbsolute Timeout,
EPP.SessionPool.<system>.minAbsoluteTimeout, and
EPP.SessionPoo.<system>.maxAbsolute Timeout properties.

Revised the domain names for the Verisign registries systems.

Updated the logging configuration information to leverage
SLF4J along with auto-discovered backend loggers including

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

® page iv

James F. Gould

James F. Gould

James F. Gould

James F. Gould

James F. Gould

James F. Gould

Verisign Bundle EPP SDK Programmer's Guide

7/1/2021

1/11/2022

1/28/2022

6/25/2024

9/3/2024

10/10/2024

1.22.0

1.23.0

1.24.0

1.25.0

1.26.0

1.27.0

logback, Lo4J 1.2, and Log4J 2. The default backend logger
will be set to Log4J 2. Added the Maintenance Notification
EPP Extension to the bundle. Removed the JOBS Contact
EPP Extension.

1. Removed the Premium Domain Extension

2. Remove reference to the non-RFC 8748 versions of
Registry Fee Extension.

Updates that include:

1. Replaced setPreWhois and setPostWhois references to
setPreData and setPostDaa, respectiviely.

2. Added a reference to the Secure Authorization Information
for Transfer RFC 9154.

3. Updated the reference of the Registry Maintenance
Notification from the draft to RFC 9167

Added support for Use of Internationalized Email Addresses in
the EPP (draft-ietf-regext-epp-eai).

Added the TTL Extension and added the new session pool
initSessionOnMake properties.

Added the HTTP transport (EoH) based on draft-loffredo-
regext-epp-over-http. EoH is pluggable with EoT and can be
tested in parallel with EoT.

Added the QUIC transport (EoQ) based on draft-yao-regext-
epp-quic. EoQ is pluggable with EoT and can be tested in
parallel with EoT. Also cleaned up some old content and
adding some missing content.

VeriSign Inc. Proprietary Information

® page vV

Author(s)

Scott Hollenbeck
Scott Hollenbeck

Scott Hollenbeck

Scott Hollenbeck

Scott Hollenbeck

Scott Hollenbeck

Scott Hollenbeck

Scott Hollenbeck

James F. Gould

James F. Gould and
Mahendra Jain

James F. Gould

James F. Gould and

Srikanth
Veeramachaneni

James Gould and
Scott Hollenbeck

James F. Gould and
Jeff Faust

James F. Gould
James F. Gould
James F. Gould
James F. Gould

References

Title Revision

Extensible Provisioning Protocol

Extensible Provisioning Protocol (EPP) Transport
Over TCP

Extensible Provisioning Protocol (EPP) Domain
Name Mapping

Extensible Provisioning Protocol (EPP) Host
Mapping

Extensible Provisioning Protocol (EPP) Contact
Mapping

Domain Registry Grace Period Mapping for the
Extensible Provisioning Protocol

ConsoliDate Mapping for the Extensible Provisioning 01
Protocol

Domain Name System (DNS) Security Extensions
Mapping for the Extensible Provisioning Protocol

(EPP)

EPP RGP Poll Mapping 00
EPP Low Balance Mapping 00
IDN Language Tag 00
Whois Info Extension 00

RFC 5910 — Domain Name System (DNS) Security
Extensions Mapping for the Extensible Provisioning
Protocol

Client Object Attribute Extension Mapping 00
Balance Mapping 00
Defensive Registration Mapping 1.2
Email Forwarding Mapping 1.2

RFC 8334 - Launch Phase Extension

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

Date

8/2009
8/2009

8/2009

8/2009

8/2009

4/16/2004

3/22/2005

11/2005

12/10/2013

12/10/2013

12/10/2013

1/10/2014

5/2010

1/2/2014

12/16/2013

3/2018

® page vi

Wil Tan

Gavin Brown
James F. Gould
James F. Gould

James F. Gould
Nagesh Chigurupali

Srikanth
Veeramachaneni

James F. Gould

James F. Gould
Kal Feher
(Neustar)

James F. Gould

Trung Tran
(Neustar)

James F. Gould

Franscisco Obispo
(Uniregistry)

Luis Enrique Munoz
(Uniregistry)

Franscisco Obispo
(Uniregistry)

Luis Enrique Munoz
(Uniregistry)

Roger Carney
(GoDaddy)

Gavin Brown
(CentralNic)

James F. Gould
Xie Jiagui

Liu Hongyan
(Teleinfo)
James F. Gould

Personal Registration Extension Mapping

Verisign Registry Mapping

Related Domain Extension Mapping

Namestore Extension Mapping

RFC 8495 - Allocation Token Extension

RFC 8590 - Change Poll Extension

Internationalized Domain Name (IDN) Table
Mapping

Internationalized Domain Name Mapping Extension

RFC 8748 — Registry Fee Extension

Verification Code Extension

China Name Verification Mapping

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

1.2
00
00

00

07

02

06
00

1/10/2014
1/2/2014

12/10/2013
11/2018

5/2019

10/15/2018

1/5/2015

3/2020

1/10/2019
10/26/2016

® page vii

L. Zhou

N. Kong

X. Lee
(CNNIC)

C. Qi
(Teleinfo)
James F. Gould

L. Zhou

N. Kong

X. Lee
(CNNIC)

C.Qi
(Teleinfo)
James F. Gould
James F. Gould
James F. Gould
Lin Jia
(Verisign)
Roger Carney
Jody Kolker
(GoDaddy)
James F. Gould
James F. Gould

Roger Carney
Joseph Snitker
James F. Gould
Martin Casanova
(SWITCH)
Tobias Sattler
Roger Carney
Jody Kolker

RFC 8543 - Organization Mapping

RFC 8544 - Organization Extension

RFC 8807 — Login Security Extension

Registry Mapping

Launch Phase Policy Extension

Login Security Policy Extension

Validate Mapping

RFC 9038 - Unhandled Namespaces

RFC 9167 - Registry Maintenance Notifications

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

04

01
03
04

4/2019

4/2019

8/2020
10/22/2018

8/17/2018
1/16/2019
10/11/2018

5/2021

12/2021

® page viii

James F. Gould RFC 9154 — Secure Authorization Information for 12/2021
Rick Wilhelm Transfer

Dmitry Belyavskiy =~ Use of Internationalized Email Addresses 21 8/21/2024
James F. Gould

Scott Hollenbeck

Mario Loffredo (IT) EPP Transport over HTTPS 05 9/24/2024
Lorenzo Luconi

Trombacchi (.IT)

Maurizio Martinelli

(.IT)

Dan Keathley

James F. Gould

Jiankang Yao (CNNIC) EPP Transsport over QUIC 03 9/30/2024
Hongtao Li (CNNIC)

Man Zhang (CNNIC)

Daniel Keathley

James Gould

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page ix

Term

CTLD
DNS
DS
EPP
IDN
IETF

RGP
SDK
SSL
TLS
XML

Definitions, Acronyms, and Abbreviations

Description
Consolidated Top-Level Domain
Domain Name System
Delegation Signer
Extensible Provisioning Protocol
Internationalized Domain Name

http://www.ietf.org/

Request for Comments
Registry Grace Period
Software Development Kit

http://home.netscape.com/eng/ssl3/ssl-toc.html

http://www.ietf.org/rfc/rfc2246.txt?number=2246

http://www.w3c.org/ XML/

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

® page X

Contents

REFERENCES oueueieeeeereeeeereesssssessessssssssssssssssssasssasssssssssssssssnsssssssssssss VI
DEFINITIONS, ACRONYMS, AND ABBREVIATIONScccccctrrmmmnnneteeeccccsssssnassssseccssssssonsasssssassses X
1. INTRODUCGCTION ..ceeeeeecereeeeereeeesseeesseccssans 13
2. CHANGES FROM PREVIOUS VERSION. ...uuiieeettreeeeeseesssccsesesss 14
3. SUPPORTED TRANSPORTS «eeeetcecreeerereeeeeressecssssesssssssssssssssesss 14
4. QUICK START INSTRUCTIONS ...crrrrrrneerteccccsssssnnssssescesssssossasssssessssssssssssssssscsssssssnsassssssssssssss 15
1.1 RUNNING SDK TESTS VIA STUB SERVERuuiiiiititiitiiieeeeeeeeettteieeeeeeeeestsmnneeeeessesessmmnneeesssesens 17
4.1 CHANGES REQUIRED TO INTERFACE WITH VERISIGN SERVERS........cccovitvvvieeeeeeeeiiiirreeeeeeeeeeenanns 17
4.2 EXAMPLE CODE TO INITIALIZE THE VERISIGN BUNDLE EPP SDK AND START SESSION............. 19
4.3 EXAMPLE CODE TO INITIALIZE THE VERISIGN BUNDLE EPP SDK AND USING SESSION POOL ... 20
4.4 EXAMPLE / TEST PROGRAMS....cootttttttiteeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseseseseseeesesesesesesenesesesesesesenenererennnannne 21

5. SDK OVERVIEW......otttceereeerereessesssssessassssssssssons 28
1.1 SDK DIRECTORIES.cettttttuueeeeteeetttteeeeeeeseeeettesaaaeesssseetssaunasssesstesssnnaaessssssesssmmosseessssssrsmmmnns 29
1.2 SDEK I PACKAGES. ...ttt ettt e e et e ettt e eeeeessee et e aaaaaassseeetessaanaasseseeesrannaaesesessrsnnnnns 29

6. SDK CONFIGURATION .uuuuceeeerereeeneeessecesssesssssssssscsss 31
1.1 CONFIGURATION FILE .ottt ettt e ettt eee e e e e e e et aaaaeaeeseeeeetaaaaaaeeseseeeressaanas 31
6.5 LLIBRARIES. ...t eteettttteeee et et ettt e e e e e e e et taaa e aeeeee et e aaaa i aasseeeeessaanaaaeseeeesssnanaaeseeeessasnrnnneseeeeens 42
6.6 DIAGNOSTIC AND ERROR LLOGGINGcoevvitiiueieeeeeeeiieeieeee e e e e eeeeeaeeeeeeeeeeeeeaaeaeeeessesessannnseeseseeens 42
6.6.1 SDK LOG CAIEZOVIESeeeeeeeeeee ettt ettt ettt et e e eeennee e 44

6.7 ADDING AN EPP COMMAND MAPPING TO THE SDKuiiiiiiiiiiiieeeeeeeeeeieeeee e eeeeeeeeeeeeeeeeeeens 45

7. GENERIC EPP CLIENT INTERFACES ... cceeeetereeeeeeesssecssesssons 47
1.1 EPPAPPLICATION L.otvtuuieeeeeeeettteeeeeeeeeeeeteaeeeeeeeeeeeeeaaaaaeeseeeetssaanasssseesssssnnaassesseesssnrnanesesesens 47
7.8 EPPSESSION ...iiiiiittiteeee ettt ettt e e e e et ettt eeeee e e e ettt aaa s aeeseeeeeaaaaaessseeessaaanasssessesasannnnesaeerens 48
7.8.1 OVCIVICW .o e e e e e e et 48

7.8.2 SAMPLE COAEC ...ttt 50
7.8.3 INEESESSION() METROAcc.ooeiiiieieee et 52
7.8.4 eNASeSSION() MEINOM.................ccoeeeeeeieieeeee e 53
7.8.5 RELIO() MELROA..................ooooeeeeeeeeeeeeee e 54
7.8.6 SENAPOLL() MEINOA................ooceeeeiieeeeeeee e 55

7.9 B P P NV .ottt e e ettt e e e e e e e et et ae e e e s e e e et et rrae e e e ettt ar e aaaaaan 56

8. XML PARSER POOL...uuueeeeeeerereeeneeesssecesererssons 59
9. EXTENDING THE SDKuuuceiettereenneeseseceeererssssssssecssesss 60
1.1 TRANSPORT ...ttt ettt e e e ettt eeeeee e e et et taa e aaeeseeeeetanaaaaessseeetaaaaaaseseeereaaanaessseeerensnnnnnees 60
10. STUB SERVER.......cttttteteereeeereeeesesssssscsssasssssssssssss 63
1.1 EVENT HANDLERS ..covtuiieette ettt eeee et e ettt eeeeee e e e e eeeaaa e eeeseeeetaaaaaeesseeessasanaeseessesasnnaneseeerens 63
10.10 POLL HANDLERS ...cetttttteee ettt e e e et ettaeeee e e e e et et taaaaaeeseeeeeteaaaaeeseseeetesaanaesesessrenaraaness 63

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page xi

11. CLIENT IMPLEMENTATION NOTESoiiinieninienensensnesncssesssessssssssssesssessssssesssssans 64

1.1 POOLING ..ottt a s e s aa e aaa s s s sasasa s aa s s s s aaaassassasaasasaassasasasssasassssrasasasasnnes 64
11.10.1 Multiple SeSSTON POOLSccooccueiiiiiiieiieee e 65
11.10.2 Separate SSL Configuration Per Session POOLccccccoeciovoiiiiiiiiiieiiaiieeeenen 67

11.11 THREADING.......ccitiiieeeeeeee e, 68

11.12 PIPELININGccttttttttittiteeeeteeeeeeeeeeeesreseresssesesssssssssesessrsssrsssreres 68

12 POLL MESSAGES ...uuiiiiitininnnecsnicenssecssissssssesssisssssssssssssssssssssesssssssssssssssssssssassssssssssssssssss 70
13. MAPPINGS AND EXTENSIONScouiivirinstinsensncssecssnsnsssessssssesssessassssssssssssssssssessssssssssssssssss 74

13.13 NAMESTORE CLIENT INTERFACES.......ccciiiiiiiiiiiieiieie ittt s 84

13.14 IMLAPPINGS ...cottttteetereeeeeeeeeeeeereseesseesssesesssssessreres 85
13.14.1 Domain Mapping (NSDomain INterface).................cccoovueevieieeniiiiieiieeeeeie e 85
13.14.2 Host Mapping (NSHOSt INEEFACE)cooueeieiiiieieeieeeeee et 112
13.14.3 Contact Mapping (NSContact INtErface)ccccceevvevceeecieiiaiieiieeieeeee e 122
13.14.4 ReGiStry MAPDING...........oooiieieiiieee et 142
13.14.5 Balance MAPPInNGccocccooiiiiiiiiii et 149
13.14.6 EMQiIFWd MAPPING ...t 154
13.14.7 DEfREZG MAPPING ...ttt 155
13.14.8 NAMEWALCh MAPPING...........cc.oeeeeaiieiii et 156
13.14.9 IDN Table MAPPINGcc.ooeeaiiiaiieee ettt 157
13.14.10 China Name Verification MAPPING...............ccccooeoueieuiaiieiiieeieee e 162
13.14.11 Organization MAPPING............cc.cccoueeiieiaiiieeiee ettt eaeeeeniee e 167
13.14.12 Maintenance MAPPINGcccoueiouieiiiieiee ettt eeniee e 172

13.15 EXTENSIONS ..oetttitttttiteteteeeeeeeeeeeeeeeerrsesereessesesssssssssessrsssrsssrsrsrsres 173
13.15.1 NAmeStOreEXt EXTONSIONcccococuiiiiiiiiiiiiiit ettt 173
13.15.2 WHOTUS INFO EXTEISION ...ttt 174
13.15.3 SECDNS EXTOISION......c...cciiiiiiiiiieee ettt 175
13.15.4 COA EXTONSTON......cciiiieiieteet ettt 179
13.15.5 LAUNCH EXTENSION ..ottt 181
13.15.6 PEFSREG EXIEHSION ...ttt e 192
13.15.7 Related DOmMAin EXIENSION.cccccueiiiiiiiiiiie ettt 194
13.15.8 Change Poll EXTENSION.cccoovuieeeiaiieeie ettt 201
13.15.9 ReEGIStrY F@€ EXIONSION ..ottt e 202
13.15.10 Allocation TOKen EXIENSIONc.cccuiouiiieiiiiiiiiiieseeeit ettt 203
13.15.11 IDN M@AP EXTONSTION.cccueeeiieieeie ettt ettt sateeetaeeenaee e 204
13.15.12 Verification Code EXIENSIONcc.cccceeieiiieaiieiiieeee et eae e 205
13.15.13 Organization EXIERSIONccccooiviiiiiiiiiiiiieeee ettt 206
13.15.14 Login Security EXIERSIONccccooivuiiiiiieiiiieiee et 207
13.15.15 Launch PoliCy EXIENSION.cccoccveiuieiiiieiieeeeie et 209
13.15.16 Login Security Policy EXIENSIONc..cccoevuieiieaiiaiiieeee et eiae e 211
13.15.17 Validate EXtENSIONccccueiuiiiiiiiiiiiieieee ettt 213
13.15.18 Secure Authorization Information for Transfer EXtensioncccccceecveeeueennn. 214
13.15.19 Use of Internationalized Email Addresses EXteNSIONcccccueevieieeaieeannaannnn. 215
13.15.20 TTL EXTENSTON ..ottt ettt 216

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide ® page xii

1. Introduction

This document provides instructions on how to use the Verisign Bundle Extensible
Provisioning Protocol (EPP) Software Development Kit (SDK) includes all the API’s
required to interface with the Verisign EPP servers that include:

a. COM/NET (COMNET) Shared Registry System (SRS), hereon referred to as
COMNET, supports the .COM and .NET TLDs. The COMNET commands
require the NameStore Extension for specifying the target registry. The Registry
Mapping can be used to provide the list of available TLDs as well as the feature
and policy information for the TLDs.

b. Consolidated Top Level Domain (CTLD) Shared Registry System (SRS), hereon
referred to as CTLD, supports .CC, .NAME, and new gTLDs. CTLD commands
require the Namestore Extension for specifying the target registry. The Registry
Mapping can be used to provide the list of available TLDs as well as the feature
and policy information for the TLDs.

The SDK includes a full implementation of the EPP specifications independent of the
services supported by the Registry services (i.e. CTLD and COMNET). The
com.verisign.epp.interfaces.EPPDomain and
com.verisign.epp.interfaces.EPPHost fully support the IETF Domain and
Host mappings, while com.verisign.namestore.interfaces.NSDomain and
com.verisign.namestore.interfaces.NSHost provide convinence sub-
classes for easily passing the Namestore Extension and for supporting extension API’s
like Sync and RGP Restore Request/Report. The SDK also provides a Stub Server that
can run over TCP, SSL, HTTP, HTTPS, and QUIC and a set of test client code
(*Tst.java) that validates the SDK API’s and can be used as samples. For example,
com.verisign.epp.namestore.interfaces.NSPollTst includes sample
code for processing each of the supported poll messages produced by CTLD and the
COMNET.

The instructions provided include an overview of the Verisign Bundle EPP SDK, how to
configure it, how to use it, and how to extend it. Please see
http://www.verisigninc.com/en_US/products-and-services/domain-name-
services/registry-products/epp-sdk for updates to the Programmer’s Guide between
Verisign Bundle EPP SDK releases.

The Verisign Bundle EPP SDK provide detailed interface information in HTML Javadoc.
This document does not duplicate the detailed interface information contained in the
HTML Javadoc. Descriptions are provided of the main interface elements, the pre-
conditions, the post-conditions, and example code.

It is assumed that the reader has reviewed the associated EPP specifications and has a
general understanding of the EPP concepts. Much of the EPP details are encapsulated in
the SDK, but having a solid understanding of the EPP concepts will help in effectively
using the SDK.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 13

2. Changes from Previous Version

Refer to the changelog.txt file included in the bundles/verisign/doc directory for a change
history of the Verisign Bundle EPP SDK.

3. Supported Transports
The SDK supports the following transports:

1. TCP and SSL — The default configuration of the SDK is to use the SSL transport,
but the SDK can be configured to use TCP. The TCP and the SSL transports
follow RFC 5734 “Extensible Provisioning Protocol (EPP) Transport Over TCP”,
referred to as EoT.

2. HTTP and HTTPS — An optional configuration of the SDK is to use the HTTP or
HTTPS transport, referred to as EoH, which can be configured for the client and
uses a different EoH Stub Server than the EoT Stub Server.

3. QUIC — An optional configuration of the SDK is to use the QUIC transport,
referred to as EoQ, which can be configured for the client and uses a different
EoQ Stub Server than the EoT Stub Server.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 14

4. Quick Start Instructions

The Verisign Bundle EPP SDK is distributed in two forms, a source code distribution and
a binary distribution. Both distributions are preconfigured to run a TCP/IP Stub Server
and include a suite of tests that run against the TCP/IP Stub Server. The Stub Server is
described in section 10. The following steps are common to either transport:

1. Uncompress the Verisign Bundle EPP SDK. With the source distribution, the
Unix filename is epp-verisign--${BUILD_VER)}-src.tar.gz and the Windows
filename is epp-verisign-${BUILD VER}-src.zip. With the binary distribution,
the Unix filename is epp-verisign-${BUILD VER}-bin.tar.gz and the Windows
filename is epp-verisign-${BUILD VER}-bin.zip. ${BUILD VER} is the
version number for the release (e.g 1.0.0).

2. Change to the Verisign Bundle EPP SDK directory: epp-verisign-
${BUILD VER}/bundles/verisign

3. Edit any configuration changes in epp.config for EoT, epp-http.config for EoH,
and epp-quic.config for EoQ.

4. Execute one of the Gradle tasks defined in Table 1 — Verisign Bundle Gradle
Tasks. If Gradle is not already installed, the Verisign Bundle EPP SDK root
directory contains gradlew and gradlew.bat to build using the Gradle included in
the Verisign Bundle EPP SDK. Set the PATH to include the Verisign Bundle
EPP SDK root directory, or execute Gradle using a relative path (e.g.,
../../gradlew <tasks>). The Gradle tasks can be executed from the Verisign
Bundle EPP SDK root directory by prefixing the task with the sub-project path
“bunthW%ﬁsﬁnySuChaS“./gradlew bundles:verisign:testBundle”.

Table 1 — Verisign Bundle Gradle Tasks

Target Distribution Transports Description
' Supported
(src, bin, or pp
(EoT, EoH,
both)
EoQ)
clean both EoT, EoH, Cleans the built files and
EoQ directories
build src EoT, EOH, Compiles the source files
EoQ
distJavadoc src EoT, EoH, Creates the HTML API
EoQ documentation at the path
“bundles/verisign/build/javad
oc//
jar src EoT, EoH, Creates the jar file (epp-
EoQ verisign-bundle-

{$version}.jar) at the path
“builds/lib/epp”. The

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 15

version is set on the command
line with the -P option, as
in “./gradlew -Pversion=test
bundles:verisign:jar”.

startServer both EoT Starts the EoT EPP SDK Stub
Server that uses epp.config.

startHttpServer both EoH Starts the EoH EPP SDK Stub
Server that uses epp-
http.config.

startQuicServer both EoQ Starts the EoQ EPP SDK Stub
Server that uses epp-
quic.config.

testBundle both EoT, EoH, Runs all tests (codec and
EoQ client-server for each
transport) that uses
epp.config for EoT, uses epp-
http.config for EoH, and uses
epp-quic for EoQ.

testClientBundle both EoT Runs all client tests against
a previously started EoT EPP
SDK Stub Server that uses
epp.config.

testChinaClient Both EoT Runs the
ChinaVerificationCodeTst test
against a previously started
EoT EPP SDK Stub Server that
uses epp-china-
verification.config.

testChinaClientSer Both EoT Runs the

ver ChinaVerificationCodeTst test
against a started EoT EPP SDK
Stub Server that uses epp-
china-verification.config.

testHttpClientBund both EoH Runs all client tests against

le a previously started EoH EPP
SDK Stub Server that uses
epp-http.config.

testQuicClientBund both EoQ Runs all client tests against

le a previously started EoQ EPP
SDK Stub Server that uses
epp-quic.config.

testClientServerBu both EoT Runs all client tests against
ndle a started EoT EPP SDK Stub
Server that uses epp.config.

testHttpClientServ both EoH Runs all client tests against

erBundle a started EoH EPP SDK Stub
Server that uses epp-
http.config.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 16

testQuicClientServ both EoQ Runs all client tests against

erBundle a started EoQ EPP SDK Stub
Server that uses epp-
quic.config.

testCodecBundle both EoT, EoH, Runs all CODEC unit tests
EoQ that uses epp.config.

1.1 Running SDK Tests via Stub Server

The SDK works with JDK 11 and higher. Follow the directions below to run the suite of
tests against the EPP SDK Stub Server for EoT, EoH and EoQ. Use gradlew.bat on
Windows and gradlew on Unix to execute the Gradle tasks. The directions only
reference gradlew, so replace gradlew with gradlew.bat when running on
Windows.

e gradlew bundles:verisign:testClientServerBundle
e gradlew bundles:verisign:testHttpClientServerBundle

e gradlew bundles:verisign:testQuicClientServerBundle

When running the testClientServerBundle task, the following is a sample result
of a successful execution.

BUILD SUCCESSFUL in 2m 10s
106 actionable tasks: 71 executed, 35 up-to-date

41 Changes Required to Interface with Verisign Servers

The SDK configuration must be changed to communicate with the real Verisign Servers,
since the transport is SSL for the Production servers. The client mappings/extensions that
are used might have to be changed. Set the properties in “Table 2 - Changes Required to
Interface with Verisign Servers via SSL” in epp.config.

Table 2 - Changes Required to Interface with Verisign Servers via SSL

Property Update To Default
EPP.MapFactories MapFactories for products that will be All supported map
provisioned. For example, if .com domains factories.

are only provisioned, set
EPP.MapFactories to:
e com.verisign.epp.codec.do
main.EPPDomainMapFactory
e com.verisign.epp.codec.ho
st.EPPHostMapFactory

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 17

EPP.CmdRspExtensi
ons

EPP.SSLKeyFileNa
me

EPP.SSLPassPhrase

EPP.SSLKeyPassPhr
ase

EPP.SSLProtocol

EPP.SSLKeyStore

EPP.SSL TrustStoreFi
leName

EPP.SSLTrustStoreP
assPhrase

EPP.ClientSocketNa
me

Recommend use of the default map
factories.

Dependent command/response extensions
needed by the products that will be
provisioned. For example, if .cc domains are
only provisioned, set
EPP.CmdRspExtensions to:
e com.verisign.epp.codec.na
mestoreext.EPPNamestoreEx
tExtFactory

Recommend use of the default extension
factories.

JSSE keystore file name that contains the CA
issued certificate chain and the associated
private key.

Password needed to access
EPP.SSLKeyFileName file.

Password needed to access the private key
defined in the EPP.SSLKeyFileName file.
If this property is not defined,
EPP.SSLPassPhrase will be used for
accessing both the keystore and the private
key.

SSL protocol of the configured provider

SSL keystore file type

The trust store is a file that contains the
certificate or chain of certificates that this
client trusts. If this property is not defined,
than the default JRE truststore
($JAVA_HOME/lib/security/cacerts) will be
used.

Recommend commenting out this property.

Password for accessing the trust store defined
by the EPP.SSLTrustStoreFileName
property. This property is required if
EPP.SSLTrustStoreFileName is
defined.

Recommend commenting out this property.

Class used to make EoT client connections.
Options include:
1. com.verisign.epp.transport.client. EPP

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

All supported extension
factories

../../lib/keystore/testkey
s

passphrase

Not Defined

TLSv1.3

JKS

../../lib/keystore/testkey
s

Undefined

com.verisign.epp.transp
ort.client. EPPSSLClient
Socket

e page 18

PlainClientSocket — TCP

2. com.verisign.epp.transport.client. EPP
SSLClientSocket - SSL

3. com.verisign.epp.transport.client. EPP
SSLProxyClientSocket — SSL with
Proxy Server

Set this to
com.verisign.epp. transport.cli
ent.EPPSSLClientSocket for SSL.

EPP.ServerName Set to the EoT Verisign server name or IP localhost
address. The following are possible values:
1. CLTD OTE - ote-ctldepp.verisign-
grs.com
2. CTLD Production — ctldepp.verisign-
grs.com
3. COMNET OTE — epp-ote.verisign-
grs.com
4. COMNET Production - epp.verisign-
grs.net

Recommend configuring and using the
session pooling feature defined in section 1.1
to interface with multiple Verisign servers
with a single client.
EPP.ServerPort Set to the Versign server port number, which 1700
should be 700.

The SDK uses JSSE in the JDK. Use the EPP.SSL properties of the SDK to configure
JSSE. Please consult the JSSE documentation for details of how to construct java
keystores and truststores.

4.2 Example Code to initialize the Verisign Bundle EPP SDK and Start
Session
The following code can be used to initialize a session with an EPP Server.

public static void main (String[] args) {

try {
EPPApplicationSingle.getInstance () .initialize (“epp.config”) ;

catch (EPPCommandException e) {
e.printStackTrace () ;

try {

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 19

EPPSession session = new EPPSession|();
session.setTransId ("ABC-12345") ;
session.setVersion ("1.0");
session.setLang ("en") ;

1]

r

session.setClientID ("myname") ;
session.setPassword ("mypass") ;

session.initSession() ;

// Invoke commands on Interface classes here..
} // try
catch (EPPCommandException e) {

EPPResponse response = session.getResponse () ;

// Is a server specified error?

if ((response != null) && (!response.isSuccess())) {
System.out.println ("Server Error : " + response);
}
else {
e.printStackTrace () ;
System.out.println ("initSession Error : " + e);

4.3 Example Code to initialize the Verisign Bundle EPP SDK and using
Session Pool

The example provided in section 4.2 shows a simple method of creating a new EPP
session. The recommended approach is to use a session pool to manage sessions and to
borrow, return, and invalidate sessions in the pool as needed. The session pool manages
idle timeouts, manages absolute timeouts, maintains the configured number of sessions,
and provides for a configurable session create retry. There can be more then one session
pool configured, each with a pool name, so that the client can manage pools with
different settings (server info, protocol, transport, login name, login password, SSL
settings, number of sessions, etc.) from a single client. Refer to section 1.1 for more
information on the session pools. The example below shows initializing the SDK with
initializing the session pools and borrowing / returning / invalidating a session in the pool
using the “test” session pool.

try {
EPPApplicationSingle.getInstance () .initialize (“epp.config”) ;
EPPSessionPool.getInstance () .init() ;
}
catch (Exception e) {
e.printStackTrace () ;
System.exit (1) ;
}

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 20

EPPSession theSession = null;

try {
theSession = EPPSessionPool.getInstance () .borrowObject (“test”) ;
NSDomain theDomain = new NSDomain (theSession) ;
theDomain.addDomainName (“example.com”) ;
theDomain.setSubProductID (NSSubProduct.COM) ;

EPPDomainCheckResp theResponse = theDomain.sendCheck() ;

catch (EPPCommandException ex) {
if (ex.hasResponse()) {
if (ex.getResponse ().getResult () .shouldCloseSession()) {
EPPSessionPool.getInstance () .invalidateObject (“test”,

theSession) ;
theSession = null;
}
}
else {
EPPSessionPool.getInstance () .invalidateObject (“test”,
theSession) ;
theSession = null;
}
}
finally {
if (theSession !- null)

EPPSessionPool.getInstance () .returnObject (theSession) ;

// Cleanly close the session pools at the end of the program

EPPSessionPool.getInstance () .close() ;

44 Example / Test Programs

The best examples are running programs. The Verisign Bundle EPP SDK includes a
suite of client tests that are fully run against a Stub Server and that can be used as
samples of using the SDK. Download the source distribution of the Verisign Bundle EPP
SDK to review the source of the tests included in Table 3 - SDK Interface Test Classes.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 21

Table 3 - SDK Interface Test Classes

Test Classes

com.verisign.epp.interfaces.addlemail. EPPAddIEmail Tst

com.verisign.epp.interfaces.EPPAllocationTokenDomainTst

com.verisign.epp.interfaces. EPPBalanceDomainTst

com.verisign.epp.interfaces. EPPBalanceTst

com.verisign.epp.interfaces. EPPCoaDomainTst

com.verisign.epp.interfaces. EPPContactRelaxedValidationTst

com.verisign.epp.interfaces. EPPContactTst

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

Description

Test of the EAI (Additional
Email) Extension

Test of the Allocation Token
Extension

Test of the Balance Info
Command

Test of sending a Balance Info
Command.

Test of the Client Object
Attribute (COA) extension.
Tests include a domain create
with COA, and adding,
changing and removing COAs
using domain updates. Also
tests using the domain info
command to retrieve a COA
from an existing owned
domain.

Test of using the EPPContact
interface to test contact creat
command and contact info
response with relaxed contact
validation. Relaxed contact
validation loads a relaxed
contact XSD (contact-1.0-
relaxed.xsd) that makes many
of the RFC 5733 required
elements optional. This test
does not do anything unless
the
EPP.Contact.RelaxedValidatio
n epp.config property is set to
true.

Test of using the EPPContact
interface for all of the RFC
5733 contact commands. This
test creates an individual EPP
session without the SDK
session pool.

e page 22

com.verisign.epp.interfaces. EPPDefRegTst

com.verisign.epp.interfaces. EPPDomainTst

com.verisign.epp.interfaces. EPPEmailFwdTst

com.verisign.epp.interfaces. EPPHostTst

com.verisign.epp.interfaces. EPPHttpSessionTst

com.verisign.epp.interfaces. EPPIdnDomainTst

com.verisign.epp.interfaces. EPPIdnTableTst

com.verisign.epp.interfaces. EPPLaunchTst

com.verisign.epp.interfaces. EPPLowBalanceDomainTst

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

Test of the Defensive
Registration Mapping, specific
to NAME

Test of using the EPPDomain
interface for all of the RFC
5731 domain commands. This
test creates an individual EPP
session without the SDK
session pool.

Test of the Email Forwarding
Mapping, specific to .NAME

Test of using the EPPHost
interface for all of the RFC
5732 host commands. This
test creates an individual EPP
session without the SDK
session pool.

Test of doing the RFC 5730
commands (login, hello, poll,
and logout) over HTTP (EoH).

Tests send a domain create
command with the IDN
language extension
(EPPIdnLangTag). This test
creates an individual EPP
session without the SDK
session pool.

Test of the IDN Table
Mapping.

Test of sending launch phase
commands (check, create, info,
update, and delete).

Test of processing the Low
Balance Poll Message by
sending a domain create of
“test.com” against the Stub
Server that will then insert the
Low Balance Poll Message.
This test creates an individual
EPP session without the SDK
session pool.

e page 23

com.verisign.epp.interfaces. EPPNamestoreExtDomainTst

com.verisign.epp.interfaces. EPPNamestoreExtHostTst

com.verisign.epp.interfaces. EPPNameVerificationTst

com.verisign.epp.interfaces. EPPNameWatchTst

com.verisign.epp.interfaces. EPPOrgExtDomainTst

com.verisign.epp.interfaces. EPPOrgTst

com.verisign.epp.interfaces. EPPQuicSessionTst

com.verisign.epp.interfaces.EPPRegistryTst

com.verisign.epp.interfaces.EPPRelatedDomainTst

com.verisign.epp.interfaces. EPPRgpDomainTst

com.verisign.epp.interfaces. EPPSessionTst

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

Test of using the RFC 5731
domain commands along with
the NameStore Extension
(EPPNamestoreExtNamestore
Ext). This test creates an
individual EPP session without
the SDK session pool.

Test of using the RFC 5732
host commands along with the
NameStore Extension
(EPPNamestoreExtNamestore
Ext). This test creates an
individual EPP session without
the SDK session pool.

Test if the Verification Service
Provider (VSP) Mapping

Test of the NameWatch
Mapping, specific to NAME

Test of the Organization
Extension

Test of the Organization
Mapping

Test of doing the RFC 5730
commands (login, hello, poll,
and logout) over QUIC (EoQ).

Test of sending Verisign
Registry Mapping commands.

Test of sending Related
Domain Extension command
(domain info with extension).

Test of using the Domain
Registry Grace Period (RGP)
extension defined in RFC 3915
to restore a domain and to
retrieve RGP statuses from the
Stub Server. This test creates
an individual EPP session
without the SDK session pool.

Test of doing the RFC 5730
commands (login, hello, poll,

e page 24

com.verisign.epp.interfaces. EPPSyncDomainTst

com.verisign.epp.interfaces. EPPVerificationCodeDomainTst

com.verisign.epp.interfaces. EPPWhoisDomainTst

com.verisign.epp.interfaces.idnmap.EPPIdnMapDomainTst

com.verisign.epp.interfaces.launchpolicy.vO1.EPPLaunchPolic
yTst

com.verisign.epp.interfaces.loginsec.vl 0.EPPLoginSecTst

com.verisign.epp.interfaces.loginsecpolicy.v04.EPPLoginSecP
olicyTst

com.verisign.epp.interfaces.registry.v02.EPPRegistryTst

com.verisign.epp.interfaces.secdnsext.(v10|v11).EPPSecDNSD
omainTst

com.verisign.epp.interfaces.secureauthinfo.vl 0.EPPSecureAu
thInfoTst

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

and logout).

Test of using ConsoliDate
extension
(EPPSyncExtUpdate) to
synchronize the experation
date of a domain. This test
creates an individual EPP
session without the SDK
session pool.

Test of the Verification Code
Extension

Test using the EPP Whois Info
Extension with the RFC 5731
domain info command to
retrieve the additional
information sent by the Stub
Server. This test creates an
individual EPP session without
the SDK session pool.

Test of the IDN Mapping
Extension.

Test of the Launch Policy
Extension

Test of the Login Security
Extension

Test of the Login Security
Policy Extension

Test of sending Registry
Mapping commands.

Test of using the DNSSEC
Extension RFC 4310
(secDNS-1.0) and RFC 5910
(secDNS-1.1) to create, info,
and update a domain with DS
data. This test creates an
individual EPP session without
the SDK session pool.

Test of the Secure
Authorization Info Extension

e page 25

com.verisign.epp.interfaces.vl 0.EPPFeeDomainTst

com.verisign.epp.interfaces.vl 0.EPPMaintenanceTst

com.verisign.epp.interfaces.vl 0.EPPTtITst

com.verisign.epp.interfaces.validate.v02.EPPValidateTst

com.verisign.epp.namestore.interfaces. NSContactTst

com.verisign.epp.namestore.interfaces. NSDomainTst

com.verisign.epp.namestore.interfaces. NSHostTst

com.verisign.epp.namestore.interfaces. NSPollTst

com.verisign.epp.pool. EPPSessionPoolTst

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

Test of the Registry Fee
Extension

Test of the Maintenance
Mapping

Test of the TTL Extension

Test of the Validate Extension.

Test of using NSContact for
all of the contact commands.
This test also utilizes the SDK
session pool.

Test of using NSDomain for
all of the domain commands.
This test also utilizes the SDK
session pool.

Test of using NSHost for all of
the host commands. This test
also utilizes the SDK session
pool.

Test of processing each of the
poll messages produced by
NameStore and the COMNET
by sending a domain create
command for
“NSPollTst.com” to the Stub
Server, which will then insert
all possible poll message types
for consumption by NSPollTst.
This test also utilizes the SDK
session pool.

Test of using the
EPPSessionPool for an
individual session pool. It
utializes the session pool to
send a hello and poll
command. It also tests the
absolute and idle timeout
features of the pool.

® page 26

com.verisign.epp.pool. EPPSystemSessionPool Tst Test using two session pools
(default and “test™).

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 27

5. SDK Overview

The Verisign Bundle EPP SDK provide an interface for users to easily implement client
applications that use EPP as the underlying protocol. The primary goal of the SDK is the
same as EPP itself, which is to be extensible. New EPP Command Mappings can be
created and added to the SDK. The SDK provides the following features:

e Extensible EPP Client Interface
e EPP Session Management

e Pluggable Transport Package with TCP/IP and SSL/TLS transport
implementations

¢ Encapsulation of XML Encoding and Decoding

e Diagnostic logging using a powerful, open logging facility

e Extensible EPP Stub Server

e Use of an XML Parser Pool with XML schema caching

e Session Pooling with support for a separate SSL configuration per Session Pool.

e Support for pipelining when using com.verisign.epp.interfaces. EPPSession.
Pipelining Pipelining is sending multiple commands and processing the responses
asynchronously.

The EPP Session Management includes the handling of the EPP Greeting, the EPP Login,
the EPP Logout, the EPP Hello, and the EPP Poll commands. The default behavior is to
derive the EPP Login services from the classes defined in the EPP.MapFactories and the
optional EPP.ProtocolExtensions and EPP.CmdRspExtensions configuration parameters.
These configuration parameters can be overridden by calling EPPSession.setServices ()
and EPPSession.addExtensions () in the EPPSession Interface. As described in Section
1.1 - Transport, the transport layer can be easily replaced. The XML encoding and
decoding is completely encapsulated in the SDK, although the XML messages can be
logged as described in Section 6.6 - Diagnostic and Error Logging.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 28

1.1

SDK Directories

Once unpacked, the Verisign Bundle EPP SDK will have the following directories:
Table 4 - Verisign Bundle EPP SDK Directories

Directory

Graepp-verisign-

${BUILD VER}/bundles/verisi
gn

epp-verisign-
${BUILD_VER}/bundles/verisi
gn/doc

epp-verisign-
${BUILD VER}/bundles/verisi
gn/doc /html

epp-verisign-
${BUILD_ VER}/lib

epp-verisign-
${BUILD_ VER}/lib/epp

1.2

SDK Packages

Description

Main directory for the Verisign Bundle EPP SDK. A bundle
is a packaging of multiple EPP SDK mappings and
extensions. This directory contains the configuration files and
a build script that includes the Gradle tasks defined in Table 1
— Verisign Bundle Gradle Tasks.

This directory contains bundled documentation for the
Verisign Bundle EPP SDK. There are EPP Mapping
documents in PDF format (.pdf) or ASCII format (.txt). These
documents describe the XML schema definitions for the
bundled products.

This directory contains the bundled interface specification in
Javadoc format.

This directory contains the EPP SDK JAR files and keystores.

This directory contains the bundled JAR file for the Verisign
Bundle EPP SDK (epp-verisign-bundle-$ {BUILD_ VER} jar).

The SDK consists of sub-packages under com.verisign.epp. Some packages are extended
by sub-packages (i.e. com.verisign.epp.codec), and some packages are extended with new
classes in the existing packages (i.e. com.verisign.epp.interfaces). Table 5 - Verisign
Bundle EPP SDK High-Level Packages provides an overview of the high-level SDK

packages.

Table S - Verisign Bundle EPP SDK High-Level Packages

Package Description

com.verisign.epp.codec EPP Encoder/Decoder package. There is one sub-package per
implemented EPP specification (i.e. gen for the EPP General
Specification and domain for the EPP Domain Command

Mapping Specification).

com.verisign.epp.exception General EPP SDK exception classes

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 29

com.verisign.epp.interfaces Client interface classes including EPPApplication and
EPPSession

com.verisign.epp.framework EPP Server Framework classes used by the Stub Server

com.verisign.epp.serverstub Stub Server classes including handlers for each of the supported
EPP Command Mappings.

com.verisign.epp.util Set of SDK utility classes including EPPEnv.

com.verisign.epp.pool Session Pool classes

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 30

6. SDK Configuration

1.1 Configuration File

The Verisign Bundle EPP SDK configuration file is a Java properties file that is passed to
EPPApplication.initialize(String) to initialize the SDK. It contains configuration
parameters that initialize the logging facility, that specify the EPP Command Mapping
classes, that initialize the XML Parser Pools, and that initialize the transport layer. Each
of the parameters has accessor methods in EPPEnv. The property file is searched in the
following ways:

1. On the file system (i.e. new File(String))
In the system ClassLoader (i.e.
ClassLoader.getSystemResource AsStream(String))

3. In the ClassLoader of the Environment class (i.e.
Environment.class.getClassLoader().getResource AsStream(String)).

The parameters that include “Client” and “Server” indicate two separate parameters for
the Client and the Server, respectively. The Process column with a value “Client/Server”
indicates that the Client is the process for the Client form of the parameter and that the
Server is the process for the Server form of the parameter. The required column and the
description apply to both forms of the parameter. You may optionally setup separate
epp.config files for client and server, when running the stub server. The parameters
containing “Server” are required in the server’s epp.config; parameters containing
“Client” are required in the client’s epp.config.

Table 6 - SDK Configuration File Parameters shows the configuration parameters in
the configuration file. The table includes each configuration parameter, a description, the
process that uses the parameter (Client, Server, or Both), and whether the parameter is
required. The JSSE parameters are only required if EPP.ClientSocketName or
EPP.ServerSocketName use a JSSE class. Bolded parameters are new to this release of

the SDK.
Parameter Process Required Description
EPP.ClientHost Client No Host name or IP Address that the client will connect from.
If not defined the client host will default to the loopback
address.
EPP.ClientSocketName Client No Concrete client socket class. The class must implement the

EPPClientCon interface and is only required for TCP or
SSL. The concrete EPPClientCon class is instantiated when
an EPPSession is instantiated and is closed when
EPPSession.endSession() is called. The classes provided in
the SDK include:

com.verisign.epp.transport.client. EPPPlainClientSocket -
Plain TCP/IP socket connection(s)

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 31

EPP.CmdRspExtensions

EPP.Contact.RelaxedVali
dation

EPP.ConTimeOut

EPP.FullSchemaCheckin
g

EPP.HttpServerScheme

Client

Client/Serv
er

Client

Client/Serv
er

Server

(EoH)

Yes

Yes for
EoH

com.verisign.epp.transport.client. EPPSSLClientSocket -
SSL TCP/IP socket connection(s)

com.verisign.epp.transport.client. EPPPlainProxyClientSock
et - Plain TCP/IP socket connection(s) that connects through
an Apache Proxy Server (mod proxy). The
EPP.ProxyServersLocator property must be set and the
EPP.ProxyServers and EPP.ProxyServersRandomize should
be set.

com.verisign.epp.transport.client. EPPSSLProxyClientSocke
t - SSL TCP/IP socket connection(s) that connects through
an Apache Proxy Server. The EPP.ProxyServersLocator
property must be set and the EPP.ProxyServers and
EPP.ProxyServersRandomize should be set.

Space separated list of fully qualified EPP Command
Extension factory class names. There is one EPP Command
Response Extension Factory mapping per EPP Command
Response Extensions. See the Programmer Guide for the
desired EPP Command Mapping for more details

Optional Boolean setting that loads and validates to a
relaxed form of the contact XSD (contact-1.0-relaxed.xsd)
that makes the <contact:name>, <contact:addr>,
<contact:city>, <contact:street>, <contact:cc>, and
<contact:email> elements optional. Stub Server and client-
side code drive off this property to apply the relaxed
validation. Relaxed contact validation only applies if the
property exists and is set to true.

Default is false

Connection timeout in milliseconds. A setting of 0 indicates
no timeout. The default setting is 50000 milliseconds (50
seconds).

Turns on/off strict XML schema validation. Set to true to
test against the Stub Server with full XML schema
validation. EPP.Validating must be set to true for the
EPP.FullSchemaChecking setting to have any impact.

Default is true.

HTTP server scheme to use by server, with options
including “http” or “https”.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

e page 32

EPP.HttpVersion

EPP.LoginAdapter

EPP.MapFactories

EPP.MaxPacketSize

EPP.PollHandlers

EPP.PollMessageFilter

EPP.ProtocolExtensions

Verisign Bundle EPP SDK Programmer's Guide

Client
(EoH)

Client

Client

Client/Serv
er

Server

Server

Client

Yes

HTTP version to use by the client, with a default of “2”” and
the options:

1. “1.1” for HTTP/1.1

2. “2” for HTTP/2

3. “3” for future HTTP/3

Concrete optional

com.verisign.epp.interfaces. EPPLoginAdapter that can
customize (adapt) the makeup of the EPP Login Command
sent to the server. The LoginAdapter is called prior to
sending the login command to the server in
com.verisign.epp.interfaces. EPPSession.

Default is

com.verisign.epp.interfaces. EPPLoginSecLoginAdapter to
support automatically adding the Login Security Extension
to the login command when the password or new password
is longer than 16 characters or the EPP.UseUserAgent
property is not set to false.

Space separated list of fully qualified EPP Command
Mapping factory class names. There is one EPP Mapping
Factory per EPP Command Mapping. See the Programmer
Guide for the desired EPP Command Mapping for more
details.

Maximum packet size of bytes accepted to ensure
that the client is not overrun with an invalid
packet or a packet that exceeds the maximum size.
The default is 10000 if property is not defined.

Space separated list of fully qualified EPP Poll Handler
class names loaded in the Stub Server. Each EPP Command
Mapping that supports EPP Poll will include an EPP Poll
Handler. See the Programmer Guide for the desired EPP
Command Mapping for more details.

Set one of the
com.verisign.epp.codec.gen.EPPPollMessageFilter classes
that is called from within
com.verisign.epp.serverstub.GenHandler.doPoll(EPPEvent,
Object) to filter the poll message responses based on the
client login services. The server must not return extensions
(object or command / response) that the client does not
support based on the login services that are passed in the
Login Command. The EPP.PollMessageFilter property

is optional and if set should be set only once.

Default is null (undefined)

Space separated list of fully qualified EPP Protocol
Extension factory class names. There is one EPP Protocol
Extension Factory Mapping per EPP Protocol Extensions.
See the Programmer Guide for the desired EPP Command
Mapping for more details.

VeriSign Inc. Proprietary Information

® page 33

EPP.ProxyServers Client No Defines the list of Apache Proxy Servers to connect through
when the EPP.ProxyServersLocator property is set to
com.verisign.epp.transport.client. EPPConfigProxyServersL
ocator. The format required for the property value is:

(<proxy server>:<port number>)(,<proxy server>:<port
number>)*
<proxy server> ::='['?<ip address> | <host name>"]'?

An example value of for connecting to the local Apache
Server using the host name, [Pv4 address, and [Pv6 address
is “localhost:80,127.0.0.1:80,[::1]:80”.

EPP.ProxyServersLocator Client No Defines the concrete class of the
com.verisign.epp.transport.client. EPPProxyServersLocator
interface that returns the list of Apache Proxy Servers to
connect through. This property is required if the EPP.
ClientSocketName property is set to either
com.verisign.epp.transport.client. EPPPlainProxyClientSock
etor
com.verisign.epp.transport.client. EPPSSILProxyClientSocke
t.

The default value is
com.verisign.epp.transport.client. EPPConfigProxyServersL
ocator to load the proxy servers from the EPP.ProxyServers

property.
EPP.ProxyServersRando Client No Defines whether or not the Apache Servers defined by the
mize EPP.ProxyServers property or what the

EPP.ProxyServersLocator class returns randomized per
connection or attempted in order.

EPP.ReadTimeOut Client No Read timeout in milliseconds. A setting of 0 indicates no
timeout. The default setting is 50000 milliseconds (50
seconds). If the property is not defined, the value of the
EPP.ConTimeOut property is used for the read timeout.

EPP.RegistryPolicyAdapt Server No

ers

EPP.SchemaCachingPars Client/Serv No XML schema caching parser pool. This is used for parsing

erPool.size er XML in the client and the server. The property defines the
size of the pool, which is recommended to be the number of
threads used in the client or the server. Default value is 10.

EPP.SDKVersion Client No Defines the version of the Verisign EPP SDK distribution

for inclusion in the Login Security Extension user agent.

Default is automatically set by the Verisign EPP SDK
distribution.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 34

EPP.SendReceiveLogger

EPP.ServerAssembler

EPP.ServerEventHandler
S

EPP.ServerName

EPP.ServerPort

EPP.ServerSocketName

EPP.SessionPool.
.<system>.maxAbsoluteT
imeout

EPP.SessionPool.
.<system>.minAbsoluteTi
meout

EPP.SessionPool.
clientTransIdGenerator

EPP.SessionPool.
poolableFactoryClassNa
me

Client/Serv No

cr

Server

Server

Both

Both

Server

Client

Client

Client

Client

No

Yes

Yes

Yes

Yes

Concrete com.verisign.epp.util. EPPSendReceiveLogger to
use for logging sent and received packets. The default value
is to use com.verisign.epp.util. EPPRawSendReceiveLogger
if the EPP.SendReceiveLogger is not defined. An
alternative logger is to

use com.verisign.epp.namestore.util. EPPSecureSendReceive
Logger that will mask sensitive attributes like the

login password and the auth info values with the word
"MASKED".

Fully qualified class name of the class the Stub Server will
use to assemble EPP packets. This class must implement
the com.verisign.epp.framework.EPPAssembler interface.
If nothing is specified then

com.verisign.epp.framework. EPPXMLAssembler is used.

Space separated list of fully qualified EPP Event Handler
class names loaded in the Stub Server. There is one EPP
Event Handler per EPP Command Mapping. There is one
handler required for EPP general handling, which is
com.verisign.epp.serverstub.GenHandler. See the
Programmer Guide for the desired EPP Command Mapping
for more details.

Host name or [P Address for EoT, URL for EoH or EoQ for
the client to connect to. The default setting is “localhost”
for EoT, “https://localhost:8083” for EoH, and
“eoq://localhost:1700” for EoQ.

Port that the server will listen on and that the client will
connect to when using EoT.

Concrete server socket class used by the EoT Stub Server.
The classes provided in the SDK include:

com.verisign.epp.transport.server. EPPPlainServer - Plain
TCP/IP socket connection(s)

com.verisign.epp.transport.server. EPPSSLServer - SSL
TCP/IP socket connection(s)

System specific setting of
EPP.SessionPool.maxAbsoluteTimeout, where <system> is
replaced with the system name (i.e., srs, ctld)

System specific setting of
EPP.SessionPool.minAbsoluteTimeout, where <system> is
replaced with the system name (i.e., sts, ctld)

Fully qualified class name of client transaction identifier
generator that implements the

com.verisign.epp.pool. EPPClientTransIdGenerator
interface.

Default is null (not set)

Poolable factory for the EPPSession’s to include in the pool.
Options are based on the EPP transport used:

1. com.verisign.epp.pool. EPPGenericSessionPoolable

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

® page 35

EPP.SessionPool.<system
>.absoluteTimeout

EPP.SessionPool.<system
>.borrowRetries

EPP.SessionPool.<system
> clientHost

EPP.SessionPool.<system
> clientld

EPP.SessionPool.<system
> clientTransIdGenerator

EPP.SessionPool.<system
>.idleTimeout

EPP.SessionPool.<system
> initMaxTotal

EPP.SessionPool.<system
>.initSessionOnMake

EPP.SessionPool.<system
> maxIdle

EPP.SessionPool.<system
> maxTotal

EPP.SessionPool.<system
> maxWait

EPP.SessionPool.<system
> minldle

EPP.SessionPool.<system
> password

EPP.SessionPool.<system
>.poolableFactoryClassN
ame

Client

Client

Client

Client

Client

Client

Client

Client

Client

Client

Client

Client

Client

Client

Factory - EoT

2. com.verisign.epp.pool. EPPHttpSessionPoolableFac
tory — EoH

3. com.verisign.epp.pool. EPPQuicSessionPoolableFa
ctory - EoQ

System specific setting of
EPP.SessionPool.absoluteTimeout, where <system> is
replaced with the system name (i.e. srs, ctld)

System specific setting of EPP.SessionPool.borrowRetries,
where <system> is replaced with the system name (i.e. srs,
ctld)

TCP client host name. If not defined, the loopback will be
used.

System specific setting of EPP.SessionPool.clientld, where
<system> is replaced with the system name (i.e. srs, ctld)

System specific setting of
EPP.SessionPool.clientTransIdGenerator, where <system>
is replaced with the system name (i.e. srs, ctld)

System specific setting of EPP.SessionPool.idleTimeout,
where <system> is replaced with the system name (i.e. srs,
ctld)

System specific setting of EPP.SessionPool.initMaxTotal,
where <system> is replaced with the system name (i.e. srs,
ctld)

Initialize the EPPSession when created by with an EPP
login command? Boolean value with a default value of
“true”.

System specific setting of EPP.SessionPool.maxIdle, where
<system> is replaced with the system name (i.e. srs, ctld)

System specific setting of EPP.SessionPool.maxTotal,
where <system> is replaced with the system name (i.e. srs,
ctld)

System specific setting of EPP.SessionPool.maxWait, where
<system> is replaced with the system name (i.e. srs, ctld)

System specific setting of EPP.SessionPool.minldle, where
<system> is replaced with the system name (i.e. srs, ctld)

System specific setting of EPP.SessionPool.password,
where <system> is replaced with the system name (i.e. srs,
ctld)

System specific setting of EPP.SessionPool.
poolableFactoryClassName, where <system> is replaced
with the system name (i.e. sts, ctld). Options are based on
the EPP transport used:

4. com.verisign.epp.pool. EPPGenericSessionPoolable

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

® page 36

EPP.SessionPool.<system
>.serverName

EPP.SessionPool.<system
>.serverPort

EPP.SessionPool.<system
>.SSLDebug

EPP.SessionPool.<system
> .SSLEnabledCipherSuit
es

EPP.SessionPool.<system
> SSLEnabledProtocols

EPP.SessionPool.<system
> SSLKeyFileName

EPP.SessionPool.<system
> SSLKeyPassPhrase

EPP.SessionPool.<system
>.SSLKeyStore

EPP.SessionPool.<system
> SSLPassPhrase

EPP.SessionPool.<system
>.SSLProtocol

Client

Client

Client

Client

Client

Client

Client

Client

Client

Client

No

No

No

Factory - EoT

5. com.verisign.epp.pool. EPPHttpSessionPoolableFac
tory - EoH

6. com.verisign.epp.pool. EPPQuicSessionPoolableFa
ctory - EoQ

System specific setting of EPP.ServerName, where
<system> is replaced with the system name (i.e. srs, cltd)

System specific setting of EPP.ServerPort, where <system>
is replaced with the system name (i.e. srs, ctld)

Defines the SSL debug Java system property
javax.net.debug value. The possible values include:

e none — No debug

e all- All debug

This property only needs to be defined once for all pools,
since each pool property will result in resetting the
javax.net.debug system property.

Optional space delimited list of SSL cipher suites, where
<system> is replaced with the system name (i.e. srs, ctld).
Examples include:

e SSL RSA WITH RC4 128 MD5
e SSL RSA WITH RC4 128 SHA

Optional space delimited list of enabled SSL protocols,
where <system> is replaced with the system name (i.e. srs,
ctld).

Name of the identity KeyStore file, where <system> is
replaced with the system name (i.e. srs, ctld). Required if
SSLProtocol is defined for pool.

Default is ../../lib/keystore/testkeys

Optional passphrase/password for the private key stored in
the identity KeyStore, where <system> is replaced with the
system name (i.e. sts, ctld). If undefined the pool
SSLPassPhrase will be used.

Type of identity KeyStore, where <system> is replaced with
the system name (i.e. srs, ctld). Required if SSLProtocol is
defined for pool.

Default is JKS

Passphrase/password to access the identity KeyStore file
defined by SSLKeyFileName pool property, where
<system> is replaced with the system name (i.e. srs, ctld).
Required if SSLProtocol is defined for pool.

Default is passphrase

Protocol to use for pool, where <system> is replaced with
the system name (i.e. srs, ctld).

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

e page 37

EPP.SessionPool.<system
> SSLTrustStore

EPP.SessionPool.<system
> SSLTrustStoreFileNam
e

EPP.SessionPool.<system
> SSLTrustStorePassPhra
se

EPP.SessionPool.<system
> timeBetweenEvictionR
unsMillis

EPP.SessionPool.absolute
Timeout

EPP.SessionPool.borrow
Retries

EPP.SessionPool.clientld

EPP.SessionPool.idleTim
eout

EPP.SessionPool.initMax
Total

Client

Client

Client

Client

Client

Client

Client

Client

Client

If defined the pool will have its own SSL configuration.
The required pool SSL properties include SSLKeyStore,
SSLKeyFileName, and SSLKeyPassPhrase.

Default is TLSv1

Optional Type of the Trust Store, where <system> is
replaced with the system name (i.e. srs, ctld). If not defined
and the pool SSLTrustStoreFileName is defined, the pool
SSLKeyStore will be used for the Trust Store.

Default is JKS

Pool trust store file that contains the list of Certificate
Authorities that should be trusted. If not set than the pool
defaults to the keystore that comes with the JDK which is:
$JAVA HOME/jre/lib/security/cacerts.

It is recommended to comment out or not define this
property when connecting to the NameStore or COMNET
Servers.

Pool passphrase/password to access the Trust Store file
defined by the pool SSLTrustStoreFileName property.

System specific setting of
EPP.SessionPool.timeBetweenEvictionRunsMillis, where
<system> is replaced with the system name (i.e. srs, ctld)

Absolute timeout of session in milliseconds of a session in
the session pool. Sessions past the absolute timeout will be
refreshed in the pool. The setting of the
EPP.SessionPool.minAbsoluteTimeout and
EPP.SessionPool.maxAbsoluteTimeout properties override
this property.

Default is 82800000 (23 hours)

Number of retries when there is a failure in borrowing a new
session from the pool. This eliminiates the client having to
implement its own retry loop on a call to
EPPSessionPool.borrowObject() and also applies to pre-
initalizing the sessions when EPP.SessionPool.initMaxTotal
is true.

Default is 0

Client id/name used to authenticate session in the session
pool. Required if using the EPPSessionPool.

Idle timeout of session in millisonds of a sessin in the
session pool. Sessions past the idle timeout will send an
EPP hello command to keep the session alive. Required if
using the EPPSessionPool.

Default is 480000 (8 minutes)

Boolean value that will pre-initialize maxTotal sessions in
the pool.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

® page 38

EPP.SessionPool.initSessi
onOnMake

EPP.SessionPool.maxAbs
oluteTimeout

EPP.SessionPool.maxIdle

EPP.SessionPool.maxTot
al

EPP.SessionPool.maxWai
t

EPP.SessionPool.minAbs
oluteTimeout

EPP.SessionPool.minldle

EPP.SessionPool.passwor
d

EPP.SessionPool.systemP
ools

EPP.SessionPool.timeBet
weenEvictionRunsMillis

EPP.SSLDisableHostnam
eVerification

Verisign Bundle EPP SDK Programmer's Guide

Client

Client

Client

Client

Client

Client

Client

Client

Client

Client

Client

(EoH or
EoQ)

No

Default is false

Initialize the EPPSession when created by with an EPP
login command? Boolean value with a default value of
“true”.

Maximum absolute timeout of session in milliseconds of a
session in the session pool. The absolute timeout is
randomized between minAbsoluteTimeout and
maxAbsoluteTimeout properties as an override for the
absoluteTimeout property. Sessions past the absolute
timeout will be refreshed in the pool.

Maximum number of idle sessions in the session pool.

Default is 10

Total number of sessions for the session pool.

Default is 10

The maximum number of milliseconds a client will block
waiting for a session from the session pool.

Default is 60000 (1 minute)

Minimum absolute timeout of session in milliseconds of a
session in the session pool. The absolute timeout is
randomized between minAbsoluteTimeout and
maxAbsoluteTimeout properties as an override for the
absoluteTimeout property. Sessions past the absolute
timeout will be refreshed in the pool.

Minimum number of idle sessions in the session pool.

Default is 5

Password used to authenticate session in the session pool.
Required if using the EPPSessionPool.

Default the set of system session pools in a comma
separated list of names (i.e. srs,namestore). The system
name “default” initializes a default pool that uses the
EPP.SessioinPool.<param> property along with other
properties like EPP.ServerName and EPP.ServerPort. The
default pool uses the EPPSessionPool methods that don’t
take a aSystem parameter.

Frequency in milliseconds to scan idle sessions in the
session pool for timeouts.

Default is 500 (1/2 second)

Disable host name verification of the server certificate, with
a default value of “false”. The possible values are boolean
values of “true” and “false”.

VeriSign Inc. Proprietary Information

® page 39

EPP.SSLEnabledCipherS
uites

EPP.SSLEnabledProtocol
S

EPP.SSLKeyFileName

EPP.SSLKeyPassPhrase

EPP.SSLKeyStore

EPP.SSLPassPhrase

EPP.SSLProtocol

EPP.SSLTrustStoreFileN
ame

EPP.SSLTrustStorePassP
hrase

Both

Both

Both

Both

Both
Both

Both

Both

Both

No

No

No

No

No
No

Yes

No

No

Enabled Cipher Suites. Space delimeted list of cipher suites.
Examples include:

e SSL RSA WITH RC4 128 MD5
e SSL RSA WITH RC4 128 SHA

Enabled Protocols. If not defined, the default for the
provider will be used. If defined, the list of enabled
protocols should be provided using spaces as delimeters.
Examples of protocols include:

SSL - Supports some version of SSL

SSLv2 - Supports SSL version 2 or higher

SSLv3 - Supports SSL version 3

TLS - Supports some version of TLS

TLSv1 - Supports TLS version 1

TLSv1.1 — Supports TLS version 1.1

TLSv1.2 — Supports TLS version 1.2

TLSv1.3 — Supports TLS version 1.3

JSSE KeyStore file used for authentication. The SDK
includes a self-signed certificate in the KeyStore “testkeys”.

JSSE private key pass-phrase. If not set,
EPP.SSLPassPhrase is used. The SDK does not use a
different pass-phrase for the private key.

JSSE KeyStore format. The default setting is “JKS”.

JSSE KeyStore pass-phrase. The SDK provided KeyStore
has a pass-phrase of “passphrase”.

JSSE Protocol used. The possible values include:

TLS - Supports some version of TLS

SSL - Supports some version of SSL

SSLv2 - Supports SSL version 2 or higher

SSLv3 - Supports SSL version 3

TLSv1 - Supports TLS version 1.0

TLSv1.1 — Supports TLS version 1.1 (Java 7 or higher)
TLSv1.2 — Supports TLS version 1.2 (Java 7 or higher)
TLSv1.3 — Supports TLS version 1.3 (Java 11 or higher)

Set this to the keystore file that contains the list of
Certificate Authorities that should be trusted. If not set then
it defaults to the keystore that comes with the JDK which is:
$JAVA HOME/jre/lib/security/cacerts

It is recommended to comment out or not define this
property when connecting to the NameStore or COMNET
Servers.

JSSE TrustStore pass-phrase. This property is required if

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

e page 40

EPP.Test.clientld

EPP.Test.password

EPP.Test.stubServer

EPP.TransformerPool.siz
e

EPP.UseEntityResolver

EPP.UseUserAgent

EPP.Validating

EPP.XMLSignatureParse
rPool.size

javax.net.debug

Verisign Bundle EPP SDK Programmer's Guide

Client

Client

Client

Client/Serv
er

Client/Serv
er

Client

Client/Serv
er

Client/Serv
er

Both

No

No

No

No

EPP.SSLTrustStoreFileName is defined.

Optional setting for configuring the login clientld used by
the tests. This will allow the tests to target servers other
than the Stub Server like OT&E. Not all tests might have
been updated to utilize this property.

Default is “ClientX”

Optional setting for configuring the login password used by
the tests. This will allow the tests to target servers other
than the Stub Server like OT&E. Not all tests might have
been updated to utilize this property.

Default is “password”

Optional Boolean setting to specify to the tests that the
target server is the Stub Server. This allows the tests to be
customized to run against the Stub Server or against a real
server like OT&E.

Default is true

XML transformer pool. This is used for marshalling XML
in the client and the server. The property defines the size of
the pool, which is recommended to be the number of threads
used in the client or the server. Default value is 10.

Use an Entity Resolver, that supports the dynamic loading of
XML schemas based on the client or server including the
xsi:schemalocation attribute for an XML namespace that
has not already been loaded into the XML parser. XML
schemas will be pre-loaded based on the registered factories,
so the recommendation is to set this property to false. The
default setting is true for backward compatibility.

Default is true

Include the userAgent in the login security extension? The
default is true, but it can be disabled by setting the
EPP.UseUserAgent property to false.

Default is true

Turns on/off XML schema validation. The default is false
for clients for improved performance, but can be turned to
true if response validation is important. Set to true to test
against the Stub Server with XML schema validation.

Default is true.

XML Signature parser pool. This is used for validating
XML signatures in launch signed marks and signed
validation codes. The property defines the size of the pool,
which is recommended to be the number of threads used in
the client or the server. Default value is 10.

JSSE debug options. This is very useful for debugging SSL
handshaking issues. The possible values include:

VeriSign Inc. Proprietary Information

e page 41

e none — No debug
e all— All debug
This property will set the javax.net.debug System property.

Table 6 - SDK Configuration File Parameters

6.5 Libraries

The Verisign Bundle EPP SDK library, epp-verisign-bundle-{$BUILD VER}.jar, is a
bundled distribution that includes all required classes from the core EPP SDK, packages
and classes for each EPP Command Mapping, and a reference to the dependent libraries
in libs.gradle file. The core EPP classes include all of the SDK base frameworks and an
implementation of the general EPP specification. This includes session management and
the building block classes for EPP. The dependent libraries for the SDK are:

¢ junit-3.8.1.jar — Library used for SDK tests
e slf4j-api-1.7.30 — Library for the logging API.

o logdj-1.2.17, slf4j-log4j-1.7.30 — Libraries when using Log4J 1 as the backend
logger.

o logdj-slfdj-impl-2.14.1, log4j-core-2.14.1, log4j-api-2.14.1 — Libraries when using
Log4] 2 as the backend logger.

e logback-core-1.2.3, logback-classic-1.2.3 — Libraries when using logback as the
backend logger.

e XercesJ] 2.12.0 — Library used for XML parsing. This includes xercesImpl-
2.12.0.jar and xml-apis-1.4.01 jar

e Apache Commons Pool 2.8.0 — Library used for implementing the EPP session
pools and the XML Parser / Transformer pools.

e Apache Commons Codec 1.13 — Library used for Base64 encoding and decoding
within the launch extension.

e Apache Commons Collections 4.4 — Library used for the EPP session pool.
e dnsjava 3.1.0 — Library used in the secdns (DNSSEC) extension.
e jaxb-api-2.3.1 — Library used to parse an XML schema timelnstant type.

Each set of product specific EPP Command Mappings are included in the epp-verisign-
bundle-{$BUILD VER}.jar library. The library includes both client packages and classes
and Stub Server classes, so that a single library contains all of the SDK classes required
for all EPP Command Mappings.

6.6 Diagnostic and Error Logging
The Verisign Bundle EPP SDK uses SLF4J for the logging API and applications using
the Verisign Bundle EPP SDK can auto-configure their desired backend logger. The top-

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 42

level Gradle libs.gradle file includes the dependencies for Log4J 1.2 (log4j1), Log4j 2
(log4j2), and Logback (logback). The default backend logger is set to Log4J 2. The tests
and the Stub Server can be launched with the desired backend logger by editing the
dependencies include the top-level build.gradle file. Comment out only one of the
compile dependencies that include: libs.logback, libs.log4j1, and libs.log4j2. As long as
the desired set of backend logger dependent libraries and the backend logger
configuration file is in the application classpath, the application should use that backend
logger for the Verisign Bundle EPP SDK log messages. Refer to the provided backend
logger configuration files for an example of logging with the Verisign Bundle EPP SDK.

Figure 1 - Default SDK Log4J 2 Configuration File shows the configuration supplied
in the SDK for Log4J 2, which includes three appenders, LOG, PACKETFILE, and
ERROR, and a set of loggers. All logs will be sent to the LOG appender, which will
result in the log file epp.log. All logs with the priority (level) of WARN or above will be
sent to the ERROR appender, which will result in the log file epp.err. The EPP packets
will be logged to the PACKETFILE appender, which will result in the log file epp-
packet.log. The default format of the logs includes the date in the format “yyyyMMdd
HHmmss”, the category as the fully qualified class name, the priority (DEBUG, INFO,
WARN, ERROR), and the log message. The EPPSession, EPPLoginCmd, and
“org.apache.commons” logs are minimized for security reasons. The root category is set
with a priority of “debug”, so that all SDK messages will be logged.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 43

<Configuration>

<Appenders>

<File name="LOG" fileName="epp.log" append="true">
<PatternLayout pattern="%d{yyyyMMdd HHmmss} %c %$-5p %m%n"/>
</File>
<File name="PACKETFILE" fileName="epp-packet.log" append="true">
<PatternLayout pattern="%d{yyyyMMdd HHmmss} %c %$-5p %m%n"/>
</File>
<File name="ERROR" fileName="epp.err" append="true">
<PatternLayout pattern="%d{yyyyMMdd HHmmss} %c %$-5p %m%n"/>
<ThresholdFilter level="WARN" onMatch="ACCEPT" onMismatch="DENY"/>
</File>
</Appenders>

<Loggers>
<Logger name="com.verisign.epp.interfaces.EPPSession"
level="error"/>
<Logger name="com.verisign.epp.codec.gen.EPPLoginCmd"
level="error"/>
<Logger name="org.apache.commons" level="off"/>
<Logger name="com.verisign.epp.util.EPPXMLStream.packet"
level="debug">
<AppenderRef ref="LOG"/>
<AppenderRef ref="PACKETFILE"/>
</Logger>
<Root level="debug">
<AppenderRef ref="LOG"/>
<AppenderRef ref="ERROR"/>
</Root>
</Loggers>

</Configuration>

Figure 1 - Default SDK Log4J 2 Configuration File (log4j2.xml)

6.6.1 SDK Log Categories

The SDK Log Categories are based on the SDK fully qualified class names. All of the
SDK classes are contained in the package com.verisign.epp. In general, any SDK errors
are logged at the ERROR priority level. Table 7 - SDK Log Categories lists the primary
categories defined in the SDK.

Category

com.verisign.epp.uti. EPPXMLStrea Class that handles the reading and writing of the

m
priority level is enabled, the packets that are
read and written will be logged.

com.verisign.epp.util. Class that handles the loading and caching of

EPPSchemaCachingEntityResolver XML schemas. The loading is done from the

Description

EPP XML messages. When the “debug”

CLASSPATH, where the schemas need to reside

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 44

Category

com.verisign.epp.transport Package that contains the SDK transport classes.

com.verisign.epp.interfaces Package that contains the client interface

com.verisign.epp.codec Package that contains the EPP

com.verisign.epp.pool Package that contains the EPP session pool

Description

in the directory “schemas”.

When the “debug” priority level is enabled, the
trace of the primary classes will be logged.

classes. Currently, these classes don’t log
messages, but it is likely that logs will be added
in future releases.

encoding/decoding classes. Currently, these
classes don’t log messages, but it is likely that
logs will be added in future releases.

classes. Logs include the number of active
sessions, idle sessions, and identifies the session
being borrowed or returned from/to the session
pool.

Table 7 - SDK Log Categories

6.7

Adding an EPP Command Mapping to the SDK

The SDK can be easily extended to support new EPP Command Mappings. As described
in section 6.5, an EPP Command Mapping is associated with a single library. This SDK
distribution bundles EPP Command Mappings, so manually adding mappings might not
be required. Do the following to add an EPP Command Mapping to the SDK:

1.

Add the EPP Command Mapping library (i.e. epp-domain.jar) to the application
and Stub Server CLASSPATH. When using the standard SDK build scripts, the
Jar files can be added to epp-verisign-$ {BUILD VER}/lib/epp for automatic
inclusion in the CLASSPATH.

Add EPP Command Mapping factory to the EPP.MapFactories configuration
parameter. See the EPP Command Mapping Programmer Guide for the name of
the class.

Add EPP Command Mapping factory to the EPP.ProtocolExtensions
configuration parameter. See the EPP Command Mapping Programmer Guide for
the name of the class.

Add EPP Command Mapping factory to the EPP.CmdRspExtensions
configuration parameter. See the EPP Command Mapping Programmer Guide for
the name of the class.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 45

5. Add EPP Command Mapping handler to the EPP.ServerEventHandlers
configuration parameter. See the EPP Command Mapping Programmer Guide for
the name of the class.

6. Add EPP Command Mapping poll handler to the EPP.PollHandlers configuration
parameter. See the EPP Command Mapping Programmer Guide for the name of
the class. Only EPP Command Mappings that support the EPP Poll command
will include a poll handler.

By default, the services contained in the EPP <login> and the EPP <greeting> are
controlled by the classes listed In EPP.MapFactories, EPP.ProtocolExtensions,
EPP.CmdRspExtensions and EPP.ServerEventHandler. The client EPP <login> services
by default will be determined by finding the intersection of the services included in the
EPP <greeting> and the services defined by factories referenced by the
EPP.MapFactories, EPP.ProtocolExtensions, EPP.CmdRspExtensions properties. The
client can override the services with a call to EPPSession.setServices(String []) or the
client can override the extensions with a call to EPPSession.addExtensions(Vector

ext, Vector ext) before calling EPPSession.initSession().

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 46

7. Generic EPP Client Interfaces

The generic EPP client interface classes are contained in the com.verisign.epp.interfaces
package and are meant to be the primary classes that a client application will use.

1.1 EPPApplication

Figure 2 - EPPApplication Class Diagram shows the EPPApplication classes used to
initialize the SDK subsystems. EPPApplicationSingle is a Singleton version of
EPPApplication. The subsystems initialized by EPPApplication, include:

e The Environment Settings based on the contents of the configuration file.
EPPEnv provides an interface to the configuration information.

e The Logging Facility based on the EPP.Log configuration parameters. If
EPP.LogMode is set to CUSTOM, than the Logging Facility will not be initialized
by EPPApplication.

e The EPP Encoder/Decoder (CODEC) based on the EPP.MapFactories

configuration parameter

EPPApplication.initialize() must be the first SDK method called, and it reads the
configuration file passed in as an argument.

EPPApplication

Hhitiglize[myConfigFile: String): void
4hitParserPool(): void
+endApplication(]: void

VAN

EPPApplicationSingle

-EPPApplicationSingle():
+3etInstance(): EPPApplicationSingle

Figure 2 - EPPApplication Class Diagram

Figure 3 - EPPApplication Initialization Sample Code shows the code required to
initialize EPPApplication with the epp.config configuration file. After EPPApplication is
properly initialized, sessions can be created with the EPP Server as described in section 0.

try {
EPPApplicationSingle.getInstance () .initialize (“epp.config”) ;

}
catch (EPPCommandException e) {
System.err.println ("Error initializing the EPP Application: " + e);

}

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 47

// Create one or more EPP Server sessions.
EPPSession session = new EPPSession();

Figure 3 - EPPApplication Initialization Sample Code

7.8 EPPSession

7.8.1 Overview

Figure 4 - EPPSession Class Diagram shows the class that is responsible for managing
a session with an EPP Server. An EPPSession represents an authenticated connection
with the EPP Server, and is passed in the constructor of the EPP Command Mapping
Interface classes. For example, EPPDomain is created with an instance of EPPSession.
Each EPPSession is associated with one EPPClientCon, which represents one EPP
Server connection.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 48

EPPSession

+EPPSession():

-Hhit[): void

Hlogin(): void

+hello[): EPPGreeting

+sendPoll(): EPPResponse

Hlogout(]: void

HvalidateClientTrans Id myCommand: EPPCommand, myResponse: EPPResponse): void
recDocument(): Document

sendDocument(hewDoc: Document): void

+processDocument[myCommand: EPPCommand): EPPResponse
+endSession(): void

-endConnection(): void

HhitSession(): void

+getiersion(]: String

+setiersion| hewYersion: String): void

+setLang(): String

+setLang(newLanguage: String): void

+getTrans|d(): String

+setTrans|d[newTrans|d: String): void

+getResponse(): EPPResponse

+getInputStream(]: InputStream

+setInputStream(newlnput: InputStream): void
+getOutputStream(): OutputStraam

+setOutputStream| newOutput: QutputStream): void
+getClientID(): String

+setClientID[hewClient|D: String): void

+get Password(): String

+setPassword(hewPassword: String): void

+gethew Password(): String

+setNew Password newPassword: String): void

+setServices(newServiceNS: Strng[]): void

+setExtensions(ProtocolExtensions: Yector, CommandResponseExtensions: Yector): void
+setPollOp[aOp: String): void

+get PollOp[): String

+getStatusTrans|d(): String

+setStatus Trans |d[aStatusTrans: String): void
+getStatusCommand Type(): String

+setStatusCommand Type[aStatusCommand Type: String): void
+gethtsglD(): String

+sethisg D[ahsglD: String): void

W

«interfaces»

gen::EPPCodec transport::EPPClientCon

Figure 4 - EPPSession Class Diagram

The following is a description of the sequence in creation, usage, and closing of an
EPPSession:

1. The client will create an instance of an EPPSession

2. EPPSession will create a connection to the EPPServer, using the concrete
EPPClientCon defined by the EPP.ClientSocketName configuration parameter.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 49

3. The client will set the authentication information (Client ID, Password) and
authenticate with the EPP Server by calling EPPSession.initSession(). The
EPP.initSession() will automatically intersect the configured services using the
EPP.MapFactories, EPP.ProtocolExtensions, EPP.CmdRspExtensions
configuration properties with the services included in the EPP <greeting> with
setting the EPP <login> services. Optionally, the client can call
EPPSession.setServices() with the list of client services, and also the client can
optionally call EPPSession.addExtensions() with a vector of
EPPProtocolExtensions or vector of CommandResponseExtensions or a
combination of both, before calling EPPSession.initSession().

4. The EPPSession will read the EPP <greeting> from the EPP Server, will create an
EPP <login>, and will send the EPP <login> to the EPP Server.

5. The client will creates a Mapping Interface object (i.e. EPPDomain) with the
EPPSession instance.

6. The client will execute zero or more commands through the Mapping Interface
object.

7. The client will end the session by calling EPPSession.endSession().

The EPPSession will send an EPP <logout> to the EPP Server and will call
EPPClientCon.close() to close the connection with the EPP Server.

7.8.2 Sample Code

Figure S - EPPSession Life Cycle Sample Code shows the code associated with the
EPPSession life cycle. One optional step is shown, which is setting the services to
EPPDomainMapFactory.NS (urn:iana:xml:ns:domain-1.0) before initializing the session.
The exception handlers look for an EPPResponse to print out the error information sent
by the EPP Server. If no EPPResponse exists and isSuccess() returns true, than the
exception is not associated with an EPP Server error.

// Create session and set session attributes.
EPPSession session = new EPPSession();

session.setTransId ("ABC-12345-XYZ") ;
session.setVersion("1.0");
session.setlLang ("en-US") ;
session.setClientID(“ClientX”) ;
session.setPassword ("foo-BAR2") ;
session.setNewPassword ("bar-FO02") ;

// Optional step: Override the services sent with an EPP Login, which
// by default are derived from the classes defined by

// the EPP.MapFactories configuration parameter.

// Optional step: Override the extensions sent with an EPP Login, which
// by default are derived from the classes defined by

// the EPP.ProtocolExtensions and EPP.CmdRspExtensions configuration

// Parameters.

Vector ProtocolExtensions=new Vector();

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 50

ProtocolExtensions.addElement (new String (“protocolExtURI")) ;
Vector CommandResponseExtensions=new Vector () ;
CommandResponseExtensions.addElement (new String (“commandExtURI")) ;

try {
session.setServices (new String[] {EPPDomainMapFactory.NS}) ;

session.addExtensions (protocolExtensions, CommandResponseExtensions) ;
}
catch (EPPCommandException ex) {
System.err.println (“Service “ + EPPDomainMapFactory.NS + “not valid”);

}

// Initialize the session
try
{
session.initSession () ;
}
catch (EPPCommandException e)

{

EPPResponse response = session.getResponse() ;

// Is an EPP Server specified error?
if ((response != null) && (!response.isSuccess())) {
System.err.println (“initSession Server Error : “ + response);

}
else { // Internal SDK error
System.err.println (YinitSession Internal Error : “ + e);
}
}

// Create EPP Command Mapping Interface object
// See appropriate EPP Command Mapping Programmer Guide

// End the seesion
try {
session.endSession ()
}
catch (EPPCommandException e) {
EPPResponse response = session.getResponse() ;

// Is an EPP Server specified error?
if ((response != null) && (!response.isSuccess())) {
System.err.println (“endSession Server Error : “ + response);

}
else { // Internal SDK error
System.err.println (“endSession Internal Error : “ + e);

}
}

Figure 5 - EPPSession Life Cycle Sample Code

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 51

7.8.3 initSession() Method
Initializes a session with the EPP Server.

Pre-Conditions
The following methods must be previously called:

o setTransld(String) — Sets the client transaction identifier
o setClientID(String) — Sets the client login identifier

o setPassword(String) — Sets the client password
The following methods can be previously called:

o setVersion(String) — Sets the EPP protocol version. Default is “1.0”.

e setNewPassword(String) — Requests a change in password. The EPP Server
might not support this. See the SDK release notes for more details.

o setLang(String) — Sets the desired response message language. Default is “en-
US”. The EPP Server might not support any language other than “en-US”. See
the SDK release notes for more details.

o setServices(String []) — Set the services to use with the session. The default
services are derived from the classes defined by the EPP.MapFactories
configuration parameter intersected with the EPP <greeting> services. This is
useful if the client wants to explicitly define the services.

o addExtensions(Vector,Vector) — Set the Extensions to use with the session. The
default extensions are derived from the classes defined by the
EPP.ProtocolExtensions and the EPP.CmdRspExtensions configuration
properties intersected with the EPP <greeting> extension services. This is useful
if the client wants to explicitly define the extension services.

e setMode(int) — Sets the command/response processing mode to either
EPPSession. MODE SYNC (default) or EPPSession. MODE _ASYNC.
EPPSession. MODE ASYNC is used for pipelining where a call to a send method
will immediately return after sending the command and the client is responsible
for calling EPPSession.readResponse() : EPPResponse to get the response
asynchronousnly.

Post-Conditions

The session with the EPP Server has been authenticated for the services set by setServices
or derived from the classes defined in the EPP.MapFactories configuration parameter.
The successful EPPResponse can be retrieved by calling getResponse().

Exceptions

EPPCommandException that contains the EPPResponse returned from the EPP Server.
The getResponse() method returns the associated EPPResponse. If the exception is
thrown before reading the EPP Server response, than getResponse() will return null

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 52

EPP Status Codes
The following are expected EPP Status Codes when a response has been received from
the EPP Server:

Constant Name Constant Value Description

EPPResult. SUCCESS 1000 Session has successfully been
initialized. initSession will
not throw an exception, and
the successful response can be

retrieved by

calling.getResponse().
EPPResult. COMMAND SYNTAX ERROR 2001 Malformed EPP message.
EPPResult. COMMAND USE ERROR 2002 Session has already been

established, which could be
due to initSession being called
more than once.

EPPResult. PARAM OUT OF RANGE 2004 Input attribute (i.e. client
identifier, password) not valid

EPPResult. COMMAND FAILED 2500 Internal EPP Server error

EPPResult. AUTHENTICATION ERROR 2200 Not a valid user

EPPResult. AUTHORIZATION ERROR 2201 User is not authorized to
login.

EPPResult. TIMEOUT _END 2501 Command timeout has

occurred. The EPP Server
closes the connection.

Table 8 - EPPSession.initSession EPP Status Code Matrix

7.8.4 endSession() Method
Ends a session initialized by initSession().

Pre-Conditions
A session has been successfully initialized by initSession().

The following methods must be previously called:
o setTransld(String) — Sets the client transaction identifier

Post-Conditions

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 53

The connection is closed with the EPP Server. The successful EPPResponse can be
retrieved by calling getResponse().

Exceptions

EPPCommandException that contains the EPPResponse returned from the EPP Server.
The getResponse() method returns the associated EPPResponse. If the exception is
thrown before reading the EPP Server response, than getResponse() will return null.

EPP Status Codes

The following are expected EPP Status Codes when a response has been received from

the EPP Server:

Constant Name

EPPResult. SUCCESS END SESSION

EPPResult. COMMAND SYNTAX ERROR
EPPResult. COMMAND USE ERROR

EPPResult. PARAM OUT OF RANGE
EPPResult. COMMAND FAILED

EPPResult. TIMEOUT _END

Constant Value

1500

2001
2002

2004
2500
2501

Description

Session has successfully been
closed. endSession will not
throw an exception, and the
successful response can be
retrieved by
calling.getResponse().

Malformed EPP message.

Session has not been
established.

Input attribute not valid
Internal EPP Server error

Command or session timeout
has occurred. The EPP Server
closes the connection.

Table 9 - EPPSession.initSession EPP Status Code Matrix

7.8.5 hello() Method

Sends an EPP Hello message to get the EPP Greeting from the server. This can be done

with an unauthenticated and with an authenticated session.

Pre-Conditions
None.

Post-Conditions

An EPPGreeting is returned.

Exceptions

EPPCommandException indicates that the EPPGreeting was not successfully received.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

e page 54

EPP Status Codes
None.

7.8.6 sendPoll() Method
Sends a poll command to either request a poll message or to send a poll message
acknowledgement.

Pre-Conditions

A session has been successfully initialized by initSession().
The following methods must be previously called:

o setTransld(String) — Sets the client transaction identifier

e setPollOp(String) — Sets the poll operation to either EPPSession.OP_REQ for
requesting a poll message and EPPSession.OP_ACK to acknowledge a poll
message.

The following methods can be previously called:

o setMsgID(String) — Sets the message identifier associated with a poll command
where the poll operation is set to EPPSession.OP _ACK.

Post-Conditions

A poll message is contained in the EPPResponse when the poll operation is
EPPSession.OP_REQ and the poll message is removed from the poll queue when the poll
operation is EPPSession.OP_ACK.

Exceptions

EPPCommandException that contains the EPPResponse returned from the EPP Server.
The getResponse() method returns the associated EPPResponse. If the exception is
thrown before reading the EPP Server response, than getResponse() will return null.

EPP Status Codes
The following are expected EPP Status Codes when a response has been received from
the EPP Server:

Constant Name Constant Value Description

EPPResult. SUCCESS 1000 Poll acknowledgement

command was successful

EPPResult. SUCCESS POLL NO MSGS 1300 Successful Poll request

command. There are no

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 55

EPPResult.SUCCESS POLL MSG

EPPResult. COMMAND SYNTAX ERROR

EPPResult. COMMAND USE ERROR

EPPResult. PARAM OUT OF RANGE
EPPResult. COMMAND FAILED

EPPResult. TIMEOUT _END

1301

2001
2002

2004
2500
2501

messages in the queue.

Successful Poll request
command. A poll and a queue
size is returned.

Malformed EPP message.

Session has not been
established.

Input attribute not valid
Internal EPP Server error

Command or session timeout
has occurred. The EPP Server
closes the connection.

Table 10 - EPPSession.sendPoll EPP Status Code Matrix

7.9 EPPEnv

EPPEnv is a utility class initialized by EPPApplication that provides an interface for the
SDK configuration parameters. EPPEnvSingle is the Singleton class for EPPEnyv.
Figure 6 - EPPEnv Class Diagram shows the class diagram for EPPEnv and

EPPEnvSingle.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

® page 56

£EPPERy

Hhitialize newConfigFileName: String, aClassLoader: ClassLoader): void
Hnitialize[newConfigFileMame: String): void

+getServerflame(): String

+getGreetingServerflame(): String

+getServerPort():int

+getConTimeOut():int

+getClientSocketName(): String

+getLoghiade():int

#getloglevel(); Level

+getLogFile(); String

+getServerSocketName(): String
+gethapFactories(): Yector
+getProtocolExtensions(); Yector
+getCmdResponseExtensions(): Yector
+getServerEventHandlers(): Yector

Ensiranment gge:g;er:rlEtPPﬁ[s]sesTl_)ler[]:S!ring
+gel rotacol(); String -
+envinitislize(newConfigFileName: String): void +qetSSLKeyhanager); String EPPEnvSingle
+envlnitialize(newConfigFileName: String, aClassLoader: ClassLoader): void +getkeyStore(); String Q— -EPPEnvSingle():
#getEnyv(newProp: String); String e |_ +getSSLKeyvFileName(); String +getinstance(): EPPEnvSingle
+getOption(hewProp: String); String +9etSSLPassPhrase(): String

+getServerParserinitObjs():int
+getServerParsemvinSize()int
#getServerParsetdandize(). int
+getServerParsevia@Soft(): boolean
+getServerParserObjTimeout(): int
+getServerParser)serTimeout(): int
+getServerParserSkimmerFreq():int
+getServerParserShrinkBy(): int
+getServerParser ogFile(): String
+getServerParserDebug(); boolean
+getClient ParserinitObij:
+getClient ParservinSiz:
+getClient ParseriasdSize():int
+getClient ParserhiasdSoft(),
+getClient ParserObjTimeout(): int
+getClient ParserserTimeout(): int
+getClient ParserSkimmerFraq():int
+getClient ParserShrinkBy(): int
+getClient Parser ogFile(): String
+getClient ParserDebug(): boolean
+getPollHandlers(): Yector
+getialidating(): boolean

Figure 6 - EPPEnv Class Diagram

Each configuration parameter has an associated EPPEnv accessor method. Table 11 -
EPPEnv Method Mappings shows the mapping of the EPPEnv assessor methods to the
configuration parameters.

Method Name Configuration Parameter
getClientSocketName() EPP.ClientSocketName
getCmdResponseExtensions() EPP.CmdRspExtensions
getConTimeOut EPP.ConTimeOut
getFullSchemaChecking() EPP FullSchemaChecking
getGreetingServerName() EPP.GreetingServerName
getKeyStore() EPP.SSLKeyStore
getMapFactories() EPP.MapFactories

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 57

getPollHandlers()
getProtocolExtensions()
getProxyServerLocator()
getProxyServers()
getProxyServersRandomize()
getServerEventHandlers()
getServerName()
getServerPort()
getServerSocketName()
getSSLEnabledCipherSuites()
getSSLEnabledProtocol()
getSSLKeyFileName()
getSSLKeyManager()
getSSLKeyPassPhrase()
getSSLPassPhrase()
getSSLPassPhrase()
getSSLProtocol()
getSSLTrustStoreFileName()
getSSLTrustStorePassPhrase()
getValidating()
getSchemaCachingParserPoolSize()
getTransformerPoolSize()

getXMLSignatureParserPoolSize()

EPP.PollHandlers
EPP.ProtocolExtensions
EPP.ProxyServersLocator
EPP. ProxyServers
EPP.ProxyServersRandomize
EPP.ServerEventHandlers
EPP.ServerName
EPP.ServerPort
EPP.ServerSocketName
EPP.SSLEnabledCipherSuites
EPP.SSLEnabledProtocols
EPP.SSLKeyFileName
EPP.SSLKeyManager
EPP.SSLKeyPassPhrase
EPP.SSLPassPhrase
EPP.SSLPassPhrase
EPP.SSLProtocol
EPP.SSLTrustStoreFileName
EPP.SSL TrustStorePassPhrase
EPP.Validating
EPP.SchemaCachingParserPool.size
EPP.TransformerPool.size

EPP.XMLSignatureParserPool.size

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

® page 58

Table 11 - EPPEnv Method Mappings

8. XML Parser Pool

The XML Parser included in the SDK is XercesJ (http://xml.apache.org/xerces-
j/index.html), which is not thread-safe. There are three approaches to overcoming this
limitation, which include:

1. A parser per thread
2. A parser per operation

3. A parser pool

Having a parser per thread requires the SDK to have knowledge/control of the thread,
which is not flexible. Instantiating a parser per operation represents a scalability issue
because of the expense of instantiating and garbage collecting a parser for every
operation. Utilizing a parser pool provides a more scalable solution and does not require
the SDK to have knowledge/control of the thread.

Apache Common Pool 2 is used to implement the XML Parser Pool. There is an XML
Parser Pool used by the SDK Client and the SDK Stub Server. The configuration
property EPP.SchemaCachingParserPool.size can be used to configure the client and Stub
Server. Table 6 - SDK Configuration File Parameters describes the XML Parser Pool
configuration parameters. The EPPEnv class includes accessor methods for the
configuration parameters as described in Table 11 - EPPEnv Method Mappings. There is
a matching Transformer Pool that is used to marshal the XML in the client and Stub
Server, which is configured with the EPP.TransformerPool.size property.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 59

9. Extending the SDK

11 Transport
The SDK allows for the replacement of the transport layer with a combination of the

EPP.ServerName and EPP.ClientSocketName configuration parameters. The pre-built
transports in the SDK include:

e com.verisign.epp.transport.client. EPPPlainClientSocket — For TCP/IP
connections

e com.verisign.epp.transport.client. EPPSSLClientSocket — For SSL/TLS
connections

A transport class must implement com.verisign.epp.transport. EPPClientCon and have a
default constructor. Figure 7 - EPPClientCon Class Diagram shows the class diagram
for EPPClientCon.

«=interfaces
EPPClientCon

Hhitiglize(): void
+close(): void

+getOutputStream(]: java.io OutputStream
+getinputStream(): java.io. InputStream

Figure 7 - EPPClientCon Class Diagram

When a new EPPSession is created, the EPPSession will create an instance of the class
defined by the EPP.ClientSocketName configuration parameter, call the
EPPClientCon.initialize() method, and retrieve the input/output stream by calling
EPPClientCon.getInputStream() and EPPClientCon getOutputStream(). When the
EPPSession is ended by a call to EPPSession.endSession(), the EPPSession will call
EPPClientCon.close().

Figure 8 - SDK TCP/IP Transport Sample Code shows the code required to
implement a TCP/IP transport using the host name, port number, and connection timeout
SDK configuration settings. A custom transport can be used by setting
EPP.ClientSocketName with the fully qualified name of the EPPCl1ientCon class and by
using EPPSession.

import java.net.*;

import java.io.*;

import com.verisign.epp.transport.*;
import com.verisign.epp.util.*;

public class EPPClientConSample implements EPPClientCon {

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 60

public EPPClientConSample () throws EPPConException {
try {

’

_hostName = EPPEnv.getServerName ()
_portNum = EPPEnv.getServerPort();
_conTimeout = EPPEnv.getConTimeOut () ;
}
catch (EPPEnvException ex) {
throw new EPPConException ("Error initializing
attributes: " + ex);

}

_socket = null;

_input = null;

_output = null;
}

public void initialize() throws EPPConException {
try {
_socket = new Socket(hostName, portNum);
_socket.setSoTimeout (_conTimeout) ;

catch (UnknownHostException ex) {
throw new EPPConException ("Creating socket: " + ex);

catch (IOException ex) {
throw new EPPConException ("Creating socket: " + ex);

catch (SecurityException ex) {

throw new EPPConException ("Creating socket: " + ex);
}
try {

_input = socket.getInputStream();

_output = socket.getOutputStream() ;

catch (IOException ex) {
throw new EPPConException ("Getting streams: " + ex);

}

public InputStream getInputStream() throws EPPConException {
if (_input == null) {
throw new EPPConException ("The input stream is null");

}

return input;

}

public OutputStream getOutputStream() throws EPPConException {
if (_output == null) {
throw new EPPConException ("The output stream is null");

return output;

}

public void close() throws EPPConException {

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 61

if (_socket != null) {

try {
_socket.close();

}

catch (IOException ex) ({
throw new EPPConException ("Closing socket:
+ ex);

}
__socket = null;

_input = null;
_output = null;

}

private InputStream _input;
private OutputStream _output;
private Socket __socket;
private String _hostName;
private int __portNum;
private int _conTimeout;

} // End class EPPClientConSample

Figure 8 - SDK TCP/IP Transport Sample Code

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page 62

10. Stub Server

The Verisign Bundle EPP SDK includes an extensible Stub Server that implements all of
the installed EPP commands and returns back complete hard-coded successful EPP
responses.

1.1 Event Handlers

The Stub Server uses event handlers to process and respond to the EPP commands it
receives. The EPP.ServerEventHandlers, located in the epp.config file, controls what
EPP commands will be supported by the Stub Server. The general EPP commands
including EPP Login, EPP Logout, EPP Hello, EPP Poll, and the creation of the EPP
Greeting is handled by com.verisign.epp.serverstub. GenHandler.

Each EPP Command Mapping will include a handler in the com.verisign.epp.serverstub
package. For example, the EPP Domain Command Mapping has the handler
com.verisign.epp.serverstub.DomainHandler. The handlers set in
EPP.ServerEventHandlers will create the list of services in the EPP Greeting. For
example, by adding com.verisign.epp.serverstub.DomainHandler to
EPP.ServerEventHandlers, urn:ietf:params:xml:ns:domain-1.0 will be added to the EPP
Greeting service menu.

10.10 Poll Handlers

Each EPP Command Mapping that supports EPP Poll will include a handler in the
com.verisign.epp.serverstub package. For example, the EPP Domain Command Mapping
has the handler com.verisign.epp.serverstub.DomainPollHandler. The handlers loaded in
the server are included with the EPP.PollHandlers configuration parameter. The Stub
Server implements an in-memory poll queue, which can be used by server handlers to
insert messages into the queue. See the product sections of this programmer’s guide for
more details about polling requirements and adding the product specific EPP Command
Mappings. There is only one in-memory queue for the server, so different connections
will pull messages from the same queue. See the EPPSession.sendPoll() for more
information on sending an EPP Poll command.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page 63

11. Client Implementation Notes

1.1 Pooling

Connection pooling is a common pattern for scalable systems. EPPSession is associated
with a single connection for its entire lifecycle. Since an EPPSession represents an
authenticated connection with the EPP Server, it is recommended to pool EPPSession
instances. The EPP Server does have a session timeout, so the EPPSession instances will
have to be periodically refreshed. The EPPSessionPool can be used to manage a pool of
sessions. Refer to the EPP.SessionPool parameters in Table 6 - SDK Configuration File
Parameters for details on configuring the session pool. EPPSessionPool.init() will
initialize the session pool assuming the SDK has already been initialized by calling
EPPApplicationSingle.initialize(config file : String). EPPSessionPool.close will cleanly
close the underlying EPPSession instances that should be called at the ending of the
client program. Below is a sample of the block of code using the EPPSessionPool for
sending a domain check:

EPPSession theSession = null;

try {
theSession = EPPSessionPool.getInstance () .borrowObject () ;
NSDomain theDomain = new NSDomain (theSession) ;
theDomain.addDomainName (“example.com”) ;
theDomain.setSubProductID (NSSubProduct.COM) ;

EPPDomainCheckResp theResponse = theDomain.sendCheck() ;

catch (EPPCommandException ex) {

if (ex.hasResponse()) {
if (ex.getResponse ().getResult () .shouldCloseSession()) {
EPPSessionPool.getInstance () .invalidateObject (theSession) ;

theSession = null;

}
else if (theSession != null) {
EPPSessionPool.getInstance () .invalidateObject (theSession) ;

theSession = null;

}
finally {

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 64

if (theSession !- null)

EPPSessionPool.getInstance () .returnObject (theSession) ;

11.10.1 Multiple Session Pools

Multiple session pools can be configured and used in the SDK by defining a list of
system names in the EPP.SessionPool.systemPools property. The system name “default”
is for backward compatible with the EPP.SessionPool.<prop>, EPP.ServerName, and
EPP.ServerPort properties. The EPPSessionPool.init() method will attempt to initalize a
pool for each system name specified in the comma separated list o system names. The
EPPSessionPool.close() method will cleanly close the underlying EPPSession instances
contained in the pools and should be called at the end of the client program. The
properties for a system session pool follow the naming convention,
EPP.SessionPool.<system>.<prop>, where <system> is the system name. The following
epp.config properties define the use of the “default” system pool along with a new system
pool called “test”.

EPP.SessionPool.systemPools=default, test

EPP.SessionPool.test.clientTransIdGenerator=com.verisign.epp.pool.Clien
tTransIdGenerator
EPP.SessionPool.test.serverName=localhost
EPP.SessionPool.test.serverPort=1700
EPP.SessionPool.test.clientId=username
EPP.SessionPool. test.password=password
EPP.SessionPool.test.minAbsoluteTimeout=79200000
EPP.SessionPool.test.maxAbsoluteTimeout=82800000
EPP.SessionPool.test.idleTimeout=480000
EPP.SessionPool.test.minIdle=0
EPP.SessionPool.test.maxIdle=-1
EPP.SessionPool.test.maxTotal=10
EPP.SessionPool.test.initMaxTotal=true
EPP.SessionPool.test.borrowRetries=3
EPP.SessionPool.test.maxWait=60000
EPP.SessionPool.test.timeBetweenEvictionRunsMillis=500

The example below illustrates the same session pool sample using the “test” system
instead of the default system.

EPPSession theSession = null;

try {
theSession = EPPSessionPool.getInstance () .borrowObject (“test”) ;
NSDomain theDomain = new NSDomain (theSession) ;
theDomain.addDomainName (“example.com”) ;
theDomain.setSubProductID (NSSubProduct.COM) ;

EPPDomainCheckResp theResponse = theDomain.sendCheck() ;

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide ® page 65

}
catch (EPPCommandException ex) {
if (ex.hasResponse()) {
if (ex.getResponse () .getResult () .shouldCloseSession()) {

EPPSessionPool.getInstance () .invalidateObject (“test”,
theSession) ;

theSession = null;

}
else i1f (theSession != null) {

EPPSessionPool.getInstance () .invalidateObject (“test”,
theSession) ;

theSession = null;

}

finally {
if (theSession !- null)
EPPSessionPool.getInstance () .returnObject (“test”, theSession) ;

The example below illustrates the same session pool sample using the “default” system
instead of using the equavalent default system methods of EPPSessionPool.

EPPSession theSession = null;
try {

theSession =
EPPSessionPool.getInstance () .borrowObject (EPPSessionPool .DEFAULT) ;

NSDomain theDomain = new NSDomain (theSession) ;
theDomain.addDomainName (“example.com”) ;
theDomain.setSubProductID (NSSubProduct.COM) ;

EPPDomainCheckResp theResponse = theDomain.sendCheck() ;

catch (EPPCommandException ex) {
if (ex.hasResponse()) {

if (ex.getResponse () .getResult () .shouldCloseSession()) {

EPPSessionPool.getInstance () .invalidateObject (EPPSesionPool .DEFAU

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page 66

LT, theSession);

theSession = null;

}

else i1f (theSession != null) {

EPPSessionPool.getInstance () .invalidateObject (EPPSesionPool .DEFAU
LT, theSession);

theSession = null;

}
finally {

if (theSession !- null)

EPPSessionPool.getInstance () .returnObject (EPPSessionPool .DEFAULT,
theSession) ;

}

11.10.2 Separate SSL Configuration Per Session Pool

Section 11.10.1 defines how to use multiple session pools in the SDK. The SDK
provides a set of SSL configuration properties that by default will be used across all
session pools. Each session pool can define its own SSL configuration properties. All of
the SSL configuration properties are available as session pool properties. Please refer to
“Table 6 - SDK Configuration File Parameters” for more detail of the session pool SSL
properties. The SDK includes the following files to test and demonstrate the use of
separate SSL configurations per session pool:

I. bundles/verisign/epp-client.config— SDK configuration file
containing a default SSL configuration that references “../lib/keystore/client1-
identity.jks” for the identity keystore and “../lib/keystore/client-truststore.jks” for
the truststore, and the “test” system session pool SSL configuration that
references “../lib/keystore/client2-identity.jks” for the identity keystore and
“../lib/keystore/client-truststore.jks” for the truststore. The “../lib/keystore /client-
truststore.jks” truststore contains the self-signed server certificate contained in
“../../lib/keystore/testkeys”.

2. bundles/verisign/epp-server.config— SDK configuration to run
the Stub Server using “../../lib/keystore/testkeys” as the identity keystore and
“../../lib/keystore/server-truststore.jks™ as the truststore. “../../lib/keystore/server-
truststore.jks” contains the certificates for “../lib/keystore/client1-identity.jks” and
«./lib/keystore/client2-identity.jks” so that both client session pools can establish
a two-way SSL connection.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page 67

3. lib/keystore/clientl-identity. jks — Identity keystore used by the
first session pool (“default”).

4. lib/keystore/client2-identity. ks — Identity keystore used by the
second session pool (“test”).

5. lib/keystore /client-truststore.jks — Truststore used by clients
containing the server certificate from “lib/keystore/testkeys”.

6. lib/keystore/server-truststore.jks — Truststore used by server
containing the certificates from “lib/keystore/client1-identity.jks” and
“lib/keystore/client2-identity.jks”.

To run a test of using two session pools with separate SSL configurations, follow the
steps below (using UNIX conventions):

1. cd epp-verisign-${BUILD VER}/bundles/verisign

2.build.sh -DEPP.ConfigFile=epp-server.config start-
server

3. In a separate Window:
a. cd epp-verisign-${BUILD VER}/bundles/verisign

b. build.sh -DEPP.ConfigFile=epp-client.config test-
client

11.11 Threading
EPPSession and the SDK classes that use EPPSession (i.e. EPPDomain) are not thread
safe. It is recommended that each thread use its own EPPSession or use a session pool.

11.12 Pipelining

The EPPSession class supports pipelining by changing the mode from the default of
EPPSession. MODE SYNC to EPPSession. MODE ASYNC. When the mode is set to
EPPSession. MODE ASYNC calling any of the send methods (i.e.
EPPDomain.sendCreate() : EPPDomainCreateResp) will return null and the
EPPSession.readResponse() : EPPResponse method needs to be called to asynchronously
read the responses.

If Session Pooling, as described in section 1.1, is being used along with Pipelining, the
mode must be set to MODE_SYNC when returning sessions back to the pool.
Commands like login, logout, and hello are synchronous, so sessions in the pool must be
set to MODE _SYNC. The following code shows using a session pool and sending
pipelining domain check commands:

EPPSession theSession = null;
try {

theSession = EPPSessionPool.getInstance () .borrowObject () ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page 68

if (!theSession.isModeSupported (EPPSession.MODE ASYNC) {

throw new Exception (“EPPSession does NOT support
MODE_ASYNC”) ;

}

theSession.setMode (EPPSession.MODE ASYNC) ;
NSDomain theDomain = new NSDomain (theSession) ;
// Pipeline 10 domain check commands
for (int i = 0; 1 < 10; i++) {
theDomain.addDomainName (“example” + i + “.com”);
// It’s good to set the client trans id for mapping responses.
theDomain.setTransId (“ASYNC-DOMAIN-CHECK-“ + i) ;
theDomain.setSubProductID (NSSubProduct.COM) ;
// The response is null with MODE_ASYNC
theDomain. sendCheck () ;
}
// Get the domain check responses asynchronously
EPPDomainCheckResp theResponse;
for (int i = 0; 1 < 10; i++) {
theResponse = (EPPDomainCheckResp) theSession.readResponse() ;

System.out.println (“Received async domain check “ + 1 + “: “ +
theResponse) ;

}
}

catch (EPPCommandException ex) {
if (ex.hasResponse()) {

if (ex.getResponse ().getResult () .shouldCloseSession()) {
theSession.setMode (EPPSession.MODE SYNC) ;

EPPSessionPool.getInstance () .invalidateObject (theSession) ;

theSession = null;

}
else if (theSession != null) {
theSession.setMode (EPPSession.MODE SYNC) ;

EPPSessionPool.getInstance () .invalidateObject (theSession) ;

theSession = null;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page 69

}
finally {

}

if (theSession !- null)

{

theSession.setMode (EPPSession.MODE_SYNC) ;

EPPSessionPool.getInstance () .returnObject (theSession) ;

12.

Poll Messages

The servers can send different kinds EPP poll messages. “Table 12 - Poll Message
System Mapping” includes all of the possible EPP poll messages with a mapping of the

systems that support them.

Table 12 - Poll Message System Mapping

Poll Message

com.verisign.epp.codec.domain.E
PPDomainTransferResp

com.verisign.epp.codec.domain.E
PPDomainPendActionMsg

com.verisign.epp.codec.domain.E
PPDomainPendActionMsg with
com.verisign.epp.codec.launch.E
PPLaunchInfData extension

com.verisign.epp.codec.contact.E
PPContactTransferResp

com.verisign.epp.codec.emailFwd
.EPPEmailFwdTransferResp

VeriSign Inc. Proprietary Information

CTLD
X

Verisign Bundle EPP SDK Programmer's Guide

COMNET
X

Description

Used for transfer
notifications for the
domain transfer
actions: request,
cancelled, approved,
rejected, and auto
approved.

Used for domain
registration pending
action notifications.
Used to notify the
result of a launch
application.

Used for transfer
notifications for the
contact transfer
actions: request,
cancelled, approved,
rejected, and auto
approved.

Used for transfer
notifications for the
email forwarding
transfer actions:
request, cancelled,
approved, rejected,
and auto approved.

e page 70

com.verisign.epp.codec.defReg.E
PPDefRegTransferResp

com.verisign.epp.codec.nameWat
ch.EPPNameWatchTransferResp

com.verisign.epp.codec.lowbalan
cepoll. EPPLowBalancePollRespo
nse

com.verisign.epp.codec.rgppoll.E
PPRgpPollResponse

com.verisign.epp.codec.domain.E
PPDomainInfoResp with
com.verisign.epp.codec.changepo
1.LEPPChangeData
com.verisign.epp.codec.host. EPP
HostInfoResp with

com.verisign.epp.codec.changepo
1I.LEPPChangeData

Used for transfer
notifications for the
defensive registration
transfer actions:
request, cancelled,
approved, rejected,
and auto approved.
Used for transfer
notifications for the
namewatch transfer
actions: request,
cancelled, approved,
rejected, and auto
approved.

Used for account low
balance notifications.

Used for Registry
Grace Period (RGP)
pending restore
notifications.

Used for domain

change poll messages.

Used for host change
poll messages.

The test com.verisign.epp.namestore.interface. NSPollTst provides a sample of processing
the some of the poll messages. The following is a portion of the
com.verisign.epp.namestore.interfaces. NSPollTst.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 71

// Transfer notification
if (theResponse instanceof EPPDomainTransferResp) {
System.out.println ("testPoll: Got transfer notification");

EPPDomainTransferResp theMsg = (EPPDomainTransferResp) theResponse;
String theStatus = theMsg.getTransferStatus();

// Transfer request?
if (theStatus.equals (EPPDomainTransferResp.TRANSFER PENDING)) {
System.out.println ("testPoll: Got transfer request
notification");
} // Transfer approved?
else if
(theStatus.equals (EPPDomainTransferResp.TRANSFER CLIENT APPROVED)) {
System.out.println ("testPoll: Got transfer approve
notification");
} // Transfer cancelled?
else if
(theStatus.equals (EPPDomainTransferResp.TRANSFER CLIENT CANCELLED))
System.out.println ("testPoll: Got transfer cancelled
notification");
} // Transfer rejected?
else if
(theStatus.equals (EPPDomainTransferResp.TRANSFER CLIENT REJECTED)) {
System.out.println ("testPoll: Got transfer rejected
notification");
} // Tranfer auto approved?
else if
(theStatus.equals (EPPDomainTransferResp.TRANSFER SERVER APPROVED)) {
System.out.println ("testPoll: Got transfer auto approve
notification");
} // Tranfer auto cancelled?
else if
(theStatus.equals (EPPDomainTransferResp.TRANSFER SERVER CANCELLED))
System.out.println ("testPoll: Got transfer auto cancelled

notification");
}
else {
System.out.println ("testPoll: Unknown transfer status [" +
theStatus + "1"); }

} // low balance notification

else if (theResponse instanceof EPPLowBalancePollResponse) {
System.out.println ("testPoll: Got low balance notification");

} // RGP notification

else if (theResponse instanceof EPPRgpPollResponse) {
System.out.println ("testPoll: Got RGP notification");

} // Pending action notification

else if (theResponse instanceof

com.verisign.epp.codec.domain.EPPDomainPendActionMsg) ({
System.out.println ("testPoll: Got domain pending action

notification");

} // Unknown general message

else {
System.out.println ("testPoll: Got general notification");

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® pa

{

{

ge 72

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 73

13. Mappings and Extensions

This section provides a description of each of the Extensbible Provisioning Protocol
(EPP) Mappings and Extensions supported by the Verisign Bundle EPP SDK that

includes:

1. Definition of the files (i.e. library, schema)

2. Description of the interface classes, including the pre-conditions, the post-
conditions, the exceptions, the EPP status codes, and sample code of each of the

action methods.

Each of the Verisign systems support a different set of mappings and extensions included
in the Verisign Bundle EPP SDK. “Table 13 - Mapping and Extension System Support”
shows the mappings and extensions supported by the two Verisign EPP systems
(Common Top Level Domain — CTLD and COM/NET Shared Registry System -
COMNET) along with a short description. The name of the Mapping and Extension
corresponds to the directory name included in the source distribution.

Table 13 - Mapping and Extension System Support

Mapping / CTLD COMNET
Extension
allocationtoken
coa X
changepoll X X
contact X X
defreg X
domain X X
emailfwd X
fee

draft- X

brown-

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

Description

RFC 8495 — Allocation
Token Extension
Client Object Attribute
Extension to allow the
creation and
maintenance of
key/value pairs
associated with
Objects.

RFC 8590 - Change
Poll Extension

RFC 5733 - Contact
Mapping

Defensive Registration
Mapping

RFC 5731 - Domain
Mapping

Email Forwarding
Mapping

RFC 8748 — Registry
Fee Extension

e page 74

epp-fees-

06

RFC 8748 X
host X X
1dn X X
launch X
launchpolicy

draft-

gould-

regext-

launch-

policy-00
loginsec X X
Maintenance
namestoreext X X
namewatch X
nsfinance X X
org
persreg X
premiumdomain X

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

RFC 5732 - Host
Mapping

Extension for the
International Domain
Name Tag required for
IDN domain creates.
RFC 8334 - Launch
Phase Extension
draft-gould-regext-

launch-policy IETF
draft.

RFC 8807 — Login
Security Extension
draft-ietf-regext-epp-
registry-maintenance
IETF draft.

Namestore Extension
needed to specify the
target sub-product for a
command.

NameWatch Mapping

Low Balance Poll
Mapping and Balance
Mapping

RFC 8543 -
Organization Mapping
& RFC 8544 —
Organization Extension
Personal Registration
Extension

Extensions to the
domain check
command, domain
check response and
domain update
command to support
premium features.

e page 75

registry Registry Mapping
Verisign X X
Proprietary

draft-
gould-
carney-
regext-
registry-02

relateddomain X Related Domain
Extension

rgp X X RFC 3915 -
Redemption Grace
Period Extension

secdns X X RFC 5910 - Domain
Name System Security
Extension to provide
additional features
required for the
provisioning of DNS

sync X X Extension to support
the domain sync
command defined in
the ConsoliDate

Mapping
verificationcode X X draft-ietf-regext-
verificationcode IETF
Draft
whois X Extension to the

domain info command
and domain info
response to specify if
whois information is
desired and the whois
attributes, respectively.
The whois attributes
include the registrar
name, the whois server
name, the registrar
referral URL, and the
IRIS server name.

“Table 14 — Mapping and Extension Directory Standard Files” defines the standard set of
files that reside in the mapping and extension directories defined in “Table 13 - Mapping

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 76

and Extension System Support”. The mappings and extensions can be worked on in
isolation by using the files in the directories, but most of the time the Verisign bundle
directory should be used, which is the bundles/verisign directory.

Table 14 — Mapping and Extension Directory Standard Files

Directory Description

build.gradle Gradle build file that leverages the top-level Gradle files
including: settings.gradle, build.gradle, libs.gradle, and
gradle.properties.

epp.config This is a sample EPP configuration file. See section 1.1 for
information on configuring the SDK.

log4j.xml Log4J 1 XML configuration file.
log4j2.xml Log4J 2 XML configuration file.
logback.xml Logback XML configuration file.

“Table 15 - Mapping and Extension CODEC Packages” defines the CODEC Java
packages associated with each of the mappings and extensions along with a description of
how they CODEC packages are configured in the SDK.

Table 15 - Mapping and Extension CODEC Packages

Mappin Package
g/
Extensio
n
coa com.verisign.epp.codec.coae
xt
contact com.verisign.epp.codec.cont
act

Description

The COA Extension Encoder/Decoder package. All of
the detail of encoding and decoding the COA Extension is
in this package.

The EPPCoaExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter using
the full package and class name.

The standard EPP Contact Encoder/Decoder package. All
of the detail of encoding and decoding the EPP Contact
messages are in this package.

The EPPContactMapFactory must be added to the
EPP.MapFactories configuration parameter using the full
package and class name.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

e page 77

defreg

domain

emailfwd

fee

host

1dn

com.verisign.epp.codec.defre
g

com.verisign.epp.codec.dom
ain

com.verisign.epp.codec.emai
1fwd

com.verisign.epp.codec.fee.v
09

com.verisign.epp.codec.fee.v
11

com.verisign.epp.codec.fee.v
23

com.verisign.epp.codec.fee.v
10

com.verisign.epp.codec.host

com.verisign.epp.codec.idne
xt

The EPP Defensive Registration Encoder/Decoder
package. All the detail of encoding and decoding the EPP
Defensive Registration message are in this package.

The EPPDefRegMapFactory must be added to the
EPP.MapFactories configuration parameter using the full
package and class name.

The standard EPP Domain Encoder/Decoder package. All
of the detail of encoding and decoding the EPP Domain
messages are in this package.

The EPPDomainMapFactory must be added to the
EPP.MapFactories configuration parameter using the full
package and class name.

The EPP Email Forwarding Encoder/Decoder package.
All the detail of encoding and decoding the EPP Email
Forwarding message are in this package.

The EPPEmailFwdMapFactory must be added to the
EPP.MapFactories configuration parameter using the full
package and class name.

The Registry Fee Extension Encoder/Decoder packages.
All the detail of encoding and decoding the EPP Registry
Fee versioned messages are in these packages.

The desired set of EPPFeeExtFactory classes must be
added to the EPP.CmdRspExtensions configuration
parameter using the full package and class name.

The standard EPP Host Encoder/Decoder package. All of
the detail of encoding and decoding the EPP Host
messages are in this package.

The EPPHostMapFactory must be added to the
EPP.MapFactories configuration parameter using the full
package and class name.

The IDN Tag Extension Encoder/Decoder package. All
of the detail of encoding and decoding the IDN Tag
Extension is in this package.

The EPPIdnExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter using
the full package and class name.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

e page 78

launch

launchpoli
cy

loginsec

Maintenan
ce

namestore
ext

namewatc
h

com.verisign.epp.codec.laun
ch

com.verisign.epp.codec.laun
chpolicy.v0l

com.verisign.epp.codec.login
sec.vl 0

com.verisign.epp.codec.main
tenance.vl 0

com.verisign.epp.codec.nam
estoreext

com.verisign.epp.codec.nam
ewatch

The standard Launch Phase Extension Encoder/Decoder
package. All of the detail of encoding and decoding the
Launch Phase Extension is in this package.

The EPPLaunchExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter using
the full package and class name.

The Launch Policy Extension Encoder/Decoder package.
All of the detail of encoding and decoding the Login
Security Extension is in this package.

The EPPLaunchPolicyExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter using
the full package and class name.

The EPPLaunchPolicyAdapter should be added to the
EPP.RegistryPolicyAdapter configuration parameter using
the full package and class name when running the Stub
Server.

The Login Security Extension Encoder/Decoder package.
All of the detail of encoding and decoding the Login
Security Extension is in this package.

The EPPLoginSecExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter using
the full package and class name.

Maintenance Mapping Encoder/Decoder package.

The EPPMaintenanceMapFactory must be added to the
EPP.MapFactories configuration parameter using the full
package and class name.

NamestoreExt Extension Encoder/Decoder package. All
of the detail of encoding and decoding the EPP
NamestoreExt messages are in this package.

The EPPNamestoreExtExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter using
the full package and class name.

The EPP NameWatch Encoder/Decoder package. All the
detail of encoding and decoding the EPP NameWatch
message are in this package.

The EPPNameWatchMapFactory must be added to the
EPP.MapFactories configuration parameter using the full

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

e page 79

nsfinance com.verisign.epp.codec.bala
nce

nsfinance = com.verisign.epp.codec.lowb

alancepoll
org com.verisign.epp.codec.org
orgext com.verisign.epp.codec.orge
xt
persreg gzm.verisign.epp.codec.persr

premiumd com.verisign.epp.codec.prem
omain iumdomain

package and class name.

The EPP Balance Encoder/Decoder package. All the
detail of encoding and decoding the EPP Balance message
are in this package.

The EPPBalanceMapFactory must be added to the
EPP.MapFactories configuration parameter using the full
package and class name.

The EPP Low Balance Poll Encoder/Decoder package.
All the detail of encoding and decoding the EPP Low
Balance Poll message are in this package.

The EPPLowBalancePollMapFactory must be added to
the EPP.MapFactories configuration parameter using the
full package and class name.

The Organization Mapping Encoder/Decoder package.
All of the detail of encoding and decoding the
Organization Mapping is in this package.

The EPPOrgMapFactory must be added to the
EPP.MapFactories configuration parameter using the full
package and class name.

The Organization Extension Encoder/Decoder package.
All of the detail of encoding and decoding the
Organization Extension is in this package.

The EPPOrgExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter using
the full package and class name.

The Personal Registration Encoder/Decoder package. All
of the detail of encoding and decoding the Personal
Registration Extension is in this package.

The EPPPersRegExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter using
the full package and class name.

The Premium Domain Extension Encoder/Decoder
package. All of the detail of encoding and decoding the
Premium Domain Extension is in this package.

The EPPPremiumDomainExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter using
the full package and class name.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

e page 80

registry

relateddo

main

Igp

rgp

secdns

suggestion

com.verisign.epp.codec.regis
try
com.verisign.epp.codec.regis
try.vO1

com.verisign.epp.codec.regis
try.v02

com.verisign.epp.codec.relat
eddomainext

com.verisign.epp.codec.rgpe
xt

com.verisign.epp.codec.rgpp
oll

com.verisign.epp.codec.secd
nsext

com.verisign.epp.codec.sugg
estion

The EPP Registry Encoder/Decoder package. All the
detail of encoding and decoding the EPP Registry
messages are in this package.

The EPPRegistryMapFactory must be added to the
EPP.MapFactories configuration parameter using the full
package and class name.

The EPP Related Domain Encoder/Decoder package. All
the detail of encoding and deconding the EPP Related
Domain Extension are in this package.

The EPPRelatedDomainExtFactory must be added to the
EPP.MapFactories configuration parameter using the full
package and class name.

The RGP Extension Encoder/Decoder package. All of the
detail of encoding and decoding the RGP extension is in
this package.

The EPPRgpExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter using
the full package and class name.

The RGP Poll Encoder/Decoder package. All of the detail
of encoding and decoding the RGP poll message is in this
package.

The EPPRgpPollMapFactory must be added to the
EPP.MapFactories configuration parameter using the full
package and class name.

The SecDNS Extension Encoder/Decoder package. All of
the detail of encoding and decoding the SecDNS
Extension is in this package.

The EPPSecDNSExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter using
the full package and class name.

The EPP Name Suggestion Encoder/Decoder package.
All the detail of encoding and decoding the EPP Name
Suggestion message are in this package.

The EPPSuggestionMapFactory must be added to the
EPP.MapFactories configuration parameter using the full

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

e page 81

sync com.verisign.epp.codec.sync
ext

whois com.verisign.epp.codec.whoi
]

whowas com.verisign.epp.codec.who
was

package and class name.

The Sync Extension Encoder/Decoder package. All of the
detail of encoding and decoding the Sync extension is in
this package.

The EPPSyncExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter using
the full package and class name.

The Whois Extension Encoder/Decoder package. All of
the detail of encoding and decoding the Whois Extension
is in this package.

The EPPWhoisExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter using
the full package and class name.

The EPP WhoWas Encoder/Decoder package. All the
detail of encoding and decoding the EPP WhoWas
message are in this package.

The EPPWhoWasMapFactory must be added to the
EPP.MapFactories configuration parameter using the full
package and class name.

The EPP Mappings and Extensions are defined using XML schema files. These files are
located in the schemas directory of epp-verisign-bundle-{$SBUILD VER}. jar. Extract the
epp-verisign-bundle-{$BUILD VER).jar in the binary distribution to view the schema
files or look to the location column defined in “Table 16 — Mapping and Extension XML
Schema Files” to view the schema files in the source distribution. The
EPPSchemaParsingEntityResolver look for the schemas in the schemas folder of the

classpath.

Table 16 — Mapping and Extension XML Schema Files

File Name Location
coa-1.0.xsd coa/schemas
contact-1.0.xsd contact/schemas
defreg-1.0.xsd defreg/schemas
domain-1.0.xsd domain/schemas

Description

Client Object Attribute (COA) XML schema
Standard EPP Contact XML Schema.
Defensive Registration XML Schema.
Standard EPP Domain XML Schema.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

e page 82

emailfwd-1.0.xsd

fee-0.9.xsd
fee-0.11.xsd
fee-0.23.xsd
fee-1.0.xsd

host-1.0.xsd
idnLang-1.0.xsd

loginSec-0.1.xsd
loginSec-0.2.xsd

launchPolicy-
0.1.xsd

Maintenance-
1.0.xsd

namestore Ext-
1.0.xsd

launch-1.0.xsd
mark-1.0.xsd

signedMark-
1.0.xsd

xmldsig-core-
schema.xsd

namestore Ext-
1.0.xsd

namewatch-
1.0.xsd

balance-1.0.xsd

lowbalance-poll-
1.0.xsd

org-1.0.xsd
orgext-1.0.xsd

persReg-1.0.xsd

registry-0.1.xsd
(IETF draft)

emailfwd/schemas

fee/schemas

host/schemas
idn/schemas

loginsec/schemas

launchpolicy/schemas
Maintenance/schemas
namestoreext/schema

S

launch/schemas

namestoreext/schema
S

namewatch/schemas

nsfinance/schemas

org/schemas

persreg/schemas

registry/schemas

Email Forwarding XML Schema.

Registry Fee Extension versioned XML Schema.

Standard EPP Host XML Schema.
IDN Language Tag Extension XML Schema.
Login Security Extension XML Schema.

Launch Policy Extension XML Schema.

Maintenance Mapping XML Schema.

NamestoreExt XML Schema.

Launch Phase EPP Extension XML schemas.

Namestore Extension XML Schema.

NameWatch XML Schema.

Namestore Finance (Balance and Low Balance
Poll) XML schemas.

Organization Mapping and Extension XML
Schema.

Personal Registration Extension XML Schema.

Registry Mapping XML Schema.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

® page 83

registry-1.0.xsd

(Proprietary)
relatedDomain- relateddomain/schem Related Domain Extension XML Schema.
1.0.xsd as
rgp-1.0.xsd rgp/schemas Standard EPP Domain Registry Grace Period
rep-poll-1.0.xsd Period Poll Mapping XML Seherma.
sync-1.0.xsd sync/schemas Standard EPP ConsoliDate Mapping XML
Schema.

secDNS-1.0.xsd secdns/schemas Domain Name System Security Extension XML
secDNS-1.1 xsd ?;Ifgt;as (1.0 for RFC 4310 and 1.1 for RFC
suggestion-1.1.xsd suggestion/schemas Name Suggestion XML Schema.
sync-1.0.xsd sync/schemas ConsoliDate (Sync) XML Schema.
whoisInf-1.0.xsd ~ whois/schemas Whois Info Extension XML Schema.
whowas-1.0.xsd whowas/schemas WhoWas XML Schema.

13.13 Namestore Client Interfaces

The Client Interfaces package com.verisign.epp.namestore.interfaces consists of a set of
high-level client interface classes for setting the properties of commands and sending
those commands to an EPP server using an established EPP Session. Generally, there is
one Client Interface class per supported EPP mapping and a set of support classes for
attaching extensions to the commands. A set of higher-level utility Client Interface
classes and support classes have been defined to make setting of the extensions easier,
which include:

com.verisign.epp.namestore.interfaces. NSDomain — Extension of the
com.verisign.epp.namestore.interfaces. EPPDomain Client Interface that adds
methods for RGP (restore request and restore report), sync, DNSSEC, Namestore
Extension, and the Whois Info Extension. This interface is defined in section
13.14.1.

com.verisign.epp.namestore.interfaces. NSHost — Extension of the
com.verisign.epp.namestore.interfaces. EPPHost Client Interface that adds a
method for the Namestore Extension. This interface is defined in section 13.14.2.

com.verisign.epp.namestore.interfaces. NSContact - Extension of the
com.verisign.epp.namestore.interfaces. EPPContact Client Interface that adds a
method for the Namestore Extension. This interface is defined in section 13.14.3.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 84

13.14 Mappings

13.141 Domain Mapping (NSDomain Interface)

The Domain Mapping is first handled by the com.verisign.epp.interfaces. EPPDomain
interface class, which is extended by the

com.verisign.epp.namestore.interfaces. NSDomain interface to add support for common
extensions. Convenience methods are provided in NSDomain to make managing domains
easier. For example, the method setSubProductID is provided instead of having to
manually add the EPPNamestoreExtNamestoreExt with each action.

The NSDomain interface has the following relevant methods:

Return Parameters

Value
NSDomain (EPPSession aNewSession)
This is the constructor method and it requires an EPP session object to
be passed that has been authenticated (e.g. logged in).

void addDomainName (java.lang.String)
This method adds a domain name to the object for use with the action
methods.
void addExtension (EPPCodecComponent)
Adds a extension to be sent with the command.
void addHostName (java.lang.String)
Adds a host name to be associated with the domain.
void addContact (String, String)
Adds contact for call to sendCreate() or sendUpdate().
EPPResp getResponse ()
onse This method returns the EPP Response for the last executed command
on the interface.
Date getExpirationDate ()
Returns the expiration date of the domain.
Vector getExtensions ()
Gets all set command extensions.
Boolean hasExtension (Class)
Does a command extension exist with the specified Class.
EPPResp sendCheck ()
onse This method sends the domain check command to the server.
EPPResp sendCreate ()
onse This method sends the domain create command to the server.
EPPResp sendDelete ()
onse This method sends the domain delete command to the server.
EPPResp sendInfo ()
onse This method sends the domain info command to the server.
EPPResp sendUpdate ()
onse This method sends the domain update command to the server.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 85

EPPResp
onse

EPPResp
onse

EPPResp
onse

EPPResp
onse

EPPResp
onse

void

void

void

void

void

void

void

void

void

void

void

void

void

sendRenew ()

This method sends the domain renewal command to the server.
sendTransfer ()

This method sends the domain transfer command to the server.
sendRestoreRequest ()

This method sends the Registry Grace Period (RGP) restore request
command.

sendRestoreReport ()

This method sends the Registry Grace Period (RGP) restore report
command.

sendSync ()

This method sends the ConsoliDate sync command.
setTransferOpCode (java.lang.String)

Sets the operation type for future transfer commands. Valid values are
“TRANSFER_REQUEST”, “TRANSFER APPROVE” or
“TRANSFER_REJECT”

setTransId(java.lang.String)

This methods sets the client transaction identifier.

setDay (int)

Sets the target day for a call to sendSync.

setMonth (int)

Sets the target month using the Calendar month constants
(Calendar.JANUARY to Calendar. DECEMBER) for a call to
sendSync.

setIDNLangTag (String)

Sets the IDN language tag for a call to sendCreate() of an IDN domain.
setSubProductID (String)

Sets the NameStore sub-product id associated with the action method.
The NSSubProduct class includes a set of constant that can be used as
the setSubProductID argument value.

setPeriodLength (int)

Sets the registration period for a create, renew, or transfer command.
The default value is 1 year.

setPeriodUnit (String)

Sets the unit of the registration period as defined by
setPeriodLength(int) according to the EPP specification. The servers
currently only support the default value of “y” for years.
setExpirationDate (Date)

Sets the current expiration date for a call to sendRenew().
setUpdateAttrib (..)

Sets attribute to update for a call to sendUpdate().

setAuthString (String)

Sets authorization string for a call to sendCreate() , sendTransfer(), or
sendInfo()

setRegistrant (String)

Sets the domain registrant for a call to sendCreate() or sendUpdate().
setHosts (String)

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 86

void

void

void

void

void

void

void

void

void

Void

Sets the desired level of host information using one of the HOSTS
constant values for a call to sendInfo(). The possible values include:

HOSTS ALL — Get information on all hosts (delegated and
subordinate). This is the default value.

HOSTS DELEGATED — Get information on just the delegated hosts.
HOSTS SUBORDINATE — Get information on just the subordinate
hosts.

setWhoisInfo (boolean)

Sets the flag that determines if the whois info extension should be
included in the response to sendInfo(). The target server needs to
support the “Extensible Provisioning Protocol Extension Mapping:
Whois Info” to set this flag.

setSecDNSCreate (List<EPPSecDNSExtDsData>)

Sets the list of <EPPSecDNSExtDsData > instances in order to create
delegation signer information.

setSecDNSUpdateForAdd (List<EPPSecDNSExtDsData>, boolean)
Sets the list of <EPPSecDNSExtDsData > instances in order to add
delegation signer information. It also supports setting of an urgent
attribute in the SecDNS update extension which determines the
priority of the request.

setSecDNSUpdateForChg (List<EPPSecDNSExtDsData>, boolean)
Sets the list of <EPPSecDNSExtDsData > instances in order to change
delegation signer information. It also supports setting of an urgent
attribute in the SecDNS update extension which determines the
priority of the request.

setSecDNSUpdateForRem (List<Integer>, boolean)

Sets the list of <Integer> instances (i.e keytags of DS records) in order
to remove delegation signer information. It also supports setting of an
urgent attribute in the SecDNS update extension which determines the
priority of the request.

setCoaCreate (List<EPPCoaExtAttr>)

Sets the list of <EPPCoaExtAttr> instances (which in turn each specify
a single key/value pair) to be associated with the object being created.
setCoaUpdateForPut (List<EPPCoaExtAttr>)

Sets the list of <EPPCoaExtAttr> instances (which in turn each specify
a single key/value pair) to be associated with the object being updated.
If the object already has a value associated with the key, this value will
be overwritten with the value specified.

setCoaUpdateForRem (List<EPPCoaExtKey>)

Sets the list of <EPPCoaExtKey> instances specifying the key portions
of existing key/value pairs to be removed from the object being
updated.

addOrgId (EPPOrgExtId)

Adds an org identifier with role for use with sendcreate ().
addUpdateOrgId(int, EPPOrgExtId)

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 87

Adds an org identifier with role for use with sendupdate ().

Action methods are prefixed with send and are shown in bold in the previous table. Each
action method has a different set of pre-conditions defining what attributes need to be set
with the setter methods. Each action method will return a response from the server and
will throw an exception if any error occurs. If the exception is associated with an error
response from the server, then the response can be retrieved from the exception with a
call to getResponse(). The following sections describe and provide sample code for the
action methods.

13.14.1.1 NSDomain() method

The NSDomain constructor requires that an authenticated EPPSession object be passed
upon creation. Once created, the NSDomain object can perform multiple functions
without re-initializing the EPPSession object. For example, you can use the same
initialized NSDomain object to create and info a domain with the sendCreate() and
sendInfo() commands.

13.14.1.1.1 Pre-Conditions

An authenticated session has been successfully established with an EPPSession.
13.14.1.1.2 Post-Conditions

The NSDomain instance is ready for the execution of one or more operations.
13.14.1.1.3 Exceptions

None
13.14.1.1.4 Sample Code

The following example shows the steps of initializing an EPPSession, then using the
EPPSession to initialize the NSDomain interface.

EPPSession session = new EPPSession();

// optional

session.setTransId (Y"ABC-12345-XYZ") ;
session.setVersion (“1.0”);
session.setLang (“Yen”) ;

// required
session.setClientID(“ClientXID”) ;
session.setPassword (“"ClientXPass”) ;

try {
session.initSession () ;

}

catch (EPPCommandException ex) {
ex.printStackTrace() ;
System.exit (1) ;

}

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 88

|NSDomain domain = new NSDomain (session) ;

13.14.1.2 sendCheck() method

The sendCheck() method sends the EPP check domain command to check the allowable
flag for one or more domains.

13.14.1.2.1 Pre-Conditions

The following list shows the accessor methods for the required attributes:

* addDomainName(String) — add a domain name to the object in preparation
for an action method.

= setSubProductID(String) — sub-product associated with operation. Use
one of the constants from
com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.

The following list shows the the accessor methods for the optional attributes:

= addExtension(EPPCodecComponent) - Sets the extension, if any (Ex.
EPPPremiumDomainCheck for Premium Domain extension)

13.14.1.2.2 Post-Conditions

On success, an EPPDomainCheckResp is returned, with the following attributes:

= Results — the check results are returned in a vector containing one or more
EPPDomainCheckResult objects.

On success, an EPPDomainCheckResp is returned, with the following optional attributes
based on authorization level and command attributes set:

= com.verisign.epp.codec.premiumdomain. EPPPremiumDomainCheckResp
extension containing premium information. This is available via the
getExtension(Class) method.

13.14.1.2.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the
exception is thrown before reading the server response, then getResponse() will return
null.

13.14.1.2.4 Sample Code

The following example shows the steps of performing a check on domains through the
use of the NSDomain client interface and the sendCheck() method:

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 89

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 90

try {
// Check single domain name
domain.setTransId ("ABC-12345-XYZ") ;
domain.addDomainName ("mydomain.tv") ;
domain.setSubProductID (NSSubProduct.TV) ;

// optionally set the premium extension
domain.addExtension (extension);
response = domain.sendCheck () ;

// Correct number of results?
Assert.assertEquals (1, response.getCheckResults () .size());

// For each result

EPPPremiumDomainCheckResp resp =
(EPPPremiumDomainCheckResp)
response.getExtension (EPPPremiumbDomainCheckResp.class) ;

// For each result
for (int i = 0; i < resp.getCheckResults () .size(); i++) {
EPPPremiumDomainCheckResult currResult =
(EPPPremiumDomainCheckResult) resp
.getCheckResults () .elementAt (1) ;

if (currResult.isPremium()) {
System.out.println ("domainCheck: Domain "
+ currResult.getName () + " is premium");
if (currResult.getPrice() != null) {
System.out.println ("domainCheck: Premium
is $" + currResult.getPrice());

System.out.println ("domainCheck: Premium
renewal price is $" +

}

else {
System.out.println ("domainCheck: Domain "

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

EPPPremiumDomainCheck extension = new EPPPremiumDomainCheck(true);

for (int i = 0; i < response.getCheckResults().size(); i++) {
EPPDomainCheckResult currResult = (EPPDomainCheckResult)
response.getCheckResults () .elementAt (1) ;
if (currResult.isAvailable()) {
System.out.println ("domainCheck: Domain " +
currResult.getName () + " is available");
} else {
System.out.println ("domainCheck: Domain " +
currResult.getName () + " is not available");
}
}
if (response.hasExtension (EPPPremiumDomainCheckResp.class)) {

price

currResult.getRenewalPrice()) ;

+ currResult.getName () + " is not premium") ;

e page 91

} // end of try block
catch (EPPCommandException cmdException) {

// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

13.14.1.3 sendCreate() method
The sendCreate() method sends the EPP create domain command to the server.

13.14.1.3.1 Pre-Conditions

This method requires that several attributes be set prior to execution. The following list

shows the accessor methods for the required attributes:

* addDomainName(String) — add the domain name to the object in
preparation for an action method.

= setSubProductID(String) — sub-product associated with operation.

one of the constants from

Use

com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value

going forward.
The following list shows the the accessor methods for the optional attributes:

= setPeriodLength(int) — Registration period for the domain create

command. The default value is 1 year. Valid values are from 1 to 10.

= setIDNLangTag(String) — Language tag associated with IDN domain
create command. This is required if an IDN domain name is specified.

= setSecDNSCreate(List<EPPSecDNSExtDsData>) — Sets the list of
<EPPSecDNSExtDsData> instances in order to create delegation signer

(DS) information.

= setCoaCreate(List<EPPCoaFExtAttr>) - Sets the list of
<EPPCoaEXxtAttr> instances (which in turn each specify a single
key/value pair) to be associated with the object being created.

13.14.1.3.2 Post-Conditions

On success, an EPPDomainCreateResp is returned, with the following attributes:

= Name — the name of the domain being created.
= CreationDate — the date that the domain was created.
= ExpirationDate — the date that the domain is due to be renewed.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

e page 92

13.14.1.3.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the
exception is thrown before reading the server response, then getResponse() will return
null.

13.14.1.3.4 Sample Code

The following example shows the steps of performing a create of a domain through the
use of the NSDomain client interface and the sendCreate() method:

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 93

try {
domain.setTransId ("ABC-12345-XYZ") ;

domain.addDomainName (“Yexample.tv”) ;
domain.setSubProductID (NSSubProduct.TV) ;
domain.addHostNamel ("a.b.com") ;
domain.addHostName2 ("c.d.com") ;
domain.setPeriodUnit (2) ;

// -- Add Delegation Signer Information

// instantiate a secDNS:keyData object
EPPSecDNSExtKeyData keyData = new EPPSecDNSExtKeyData () ;
keyData.setFlags (EPPSecDNSExtKeyData.FLAGS ZONE KEY SEP);
keyData.setProtocol (EPPSecDNSExtKeyData.DEFAULT PROTOCOL) ;
keyData.setAlg(EPPSecDNSAlgorithm.RSASHAL) ;
keyData.setPubKey ("AQPmsXk3Q1lngNSzsH11lrX63mRIhtwkkK+5Z3"

+ "vxykBCV1INYne83+8RXkBE1Gb/YJ1ln4TacMUs"

+ "poZapT7caJdj7MdOaADKmzB2ciOvwpubNywot2"

+ "AnaQgpylce+07Y8RkbTC6xCeEwlUQZ73PzIO"

+ "OvJIDdjwPxWaO9F7zSxnGpGtOWtultQ==") ;

// instantiate another secDNS:keyData object

EPPSecDNSExtKeyData keyDataZ2 = new EPPSecDNSExtKeyData (
EPPSecDNSExtKeyData.FLAGS ZONE KEY SEP,
EPPSecDNSExtKeyData.DEFAULT PROTOCOL,
EPPSecDNSAlgorithm.RSASHAIL,
"AQOxXpFbRp7+zPBoTt6zL7Af0aEKzpS4JbVB"
+ "50fk5ES5HpXuUmU+Hnt 9hm2kMph6LZdEEL142"
+ "ngOHrgiETFCsN/YM4Zn+meRkELLpCGO3Cu/H"
+ "hwvxfaZenUAAAG6VDLIFWXQLIEMYRWO5K/gh2Ge"
+ "w5Sk/006EV7DKG2YiDJYAl7QsaZztFw==") ;

// instantiate a secDNS:dsData object

EPPSecDNSExtDsData dsData = new EPPSecDNSExtDsData () ;
dsData.setKeyTag(34095);

dsData.setAlg(EPPSecDNSAlgorithm.RSASHAL) ;
dsData.setDigestType (EPPSecDNSExtDsData.SHAI DIGEST TYPE);
dsData.setDigest ("6BDAFFFF11566D6E6AS5BA44ED0018797564AA289") ;
dsData.setMaxSigLife(604800);

dsData.setKeyData (keyData);

// instantiate another secDNS:dsData object

EPPSecDNSExtDsData dsData2 = new EPPSecDNSExtDsData(10563,
EPPSecDNSAlgorithm.RSASHAI,
EPPSecDNSExtDSData.SHAl_DIGESI_TYPE,
"9C20674BFF957211D129BODFE9410AF753559D4R",
604800, keyData2);

// dsData Records

List dsDataRecords = new ArrayList();
dsDataRecords.add(dsData):;
dsDataRecords.add(dsData2);

// Call only if server supports creating delegation signer
// information

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 94

theDomain.setSecDNSCreate (dsDataRecords) ;

response = (EPPDomainCreateResp) domain.sendCreate() ;
//-—- Output response attributes using accessors
System.out.println ("domainCreate: name = " +

response.getName ()) ;

System.out.println ("domainCreate: CreationDate = " +
response.getCreationDate ()) ;

System.out.println ("domainCreate: ExpirationDate = " +
response.getExpirationDate()) ;
} // end of try block

catch (EPPCommandException cmdException) {

// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

13.14.1.4 sendDelete() method
The sendDelete() method sends the EPP delete domain command to the server.

13.14.1.4.1 Pre-Conditions

This method expects that the domain object be populated with the unique identifier of the
domain to be deleted. The following method must be called to populate the domain
identifier:

= addDomainName(String) — call the add domain name method passing the
unique domain name in preparation for an action method.

= setSubProductID(String) — sub-product associated with operation. Use
one of the constants from
com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.

13.14.1.4.2 Post-Conditions

On success, an EPPResponse is returned, with no attributes.

13.14.1.4.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 95

exception is thrown before reading the server response, then getResponse() will return
null.

13.14.1.4.4 Sample Code

The following example shows the steps of performing a delete of an CTLD domain
through the use of the NSDomain client interface and the sendDelete() method:

try {
domain.setTransId ("ABC-12345-XYZ") ;

domain.addDomainName (“abcdefdg.tv”) ;
domain.setSubProductID (NSSubProduct.TV) ;

response = (EPPResponse) domain.sendDelete() ;

} // end of try block
catch (EPPCommandException cmdException) {

// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

13.14.1.5 sendInfo() method
The sendInfo() method sends the EPP info domain command to the server.

13.14.1.5.1 Pre-Conditions

This method expects that the domain object be populated with the single domain name of
the domain to be queried. The following method must be called to populate the domain
identifier:

= addDomainName(String) — call the add domain name method passing the
unique domain name in preparation for an action method.

= setSubProductID(String) — sub-product associated with operation. Use
one of the constants from
com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.

The following list shows the the accessor methods for the optional attributes:

= setAuthString(String) — sets the authorization string for getting full
domain information if not sponsoring Registrar.

= setHosts(String) — Sets the desired level of host information. Use one of
the HOSTS constant values:

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 96

HOSTS ALL — Get information on all hosts (delegated and subordinate).

This is the default value.

HOSTS DELEGATED — Get information on just the delegated hosts.

HOSTS SUBORDINATE — Get information on just the subordinate hosts.
= setWhoisInfo(boolean) — Sets the flag for the desire for the whois

information defined in the

com.verisign.epp.codec.whois. EPPWhoisInfData class.

13.14.1.5.2 Post-Conditions

On success, an EPPDomainlnfoResp is returned, with the following required attributes:

= name — the fully qualified domain name
* roid — the domain roid

= clientld — identifier of sponsoring client

On success, an EPPDomainlnfoResp is returned, with the following optional attributes
based on authorization level and command attributes set:

= expirationDate - date and time identifying the end of the domain's
registration period

= createdBy — identifier of the client that created the domain

= createdDate - date and time of domain creation

= JastUpdatedBy - identifier of the client that last updated the domain

= JastUpdatedDate - date and time of the most recent domain modification
= lastTransferDate - date and time of the most recent successful transfer

= authInfo - authorization information

= hosts - names of host objects

= nses - names of name server objects

= status - one or more current status descriptors

= com.verisign.epp.codec.whois. EPPWhoisInfData extension contains the
additional whois information. This is available via the
getExtension(Class) method and will only be set if the EPPWhoisInf
command extension was included with a flag value of #rue, which is
authomatically set using the setWhoisInfo(boolean) method.

= com.verisign.epp.codec.secdnsext. EPPSecDNSExtInfData extension
contains the Delegation Signer (DS) information. This is available via the
getExtension(Class) method.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 97

com.verisign.epp.codec.coaext. EPPCoaFEXxtInfData extension contains the
Client Object Attribute (COA) information. This is available via the
getExtension(Class) method.

13.14.1.5.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the

exception is thrown before reading the server response, then getResponse() will return
null.

13.14.1.54 Sample Code

The following example shows the steps of querying an CTLD domain through the use of
the NSDomain client interface and the sendInfo() method:

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 98

try {

domain.setTransId ("ABC-12345-XYZ") ;
domain.addDomainName ("abcdefg.tv") ;
domain.setSubProductID (NSSubProduct.TV) ;
domain.setHosts (EPPDomain.HOSTS ALL) ;

domain.setWhoisInfo (true); // Call only if server supports it

response = (EPPDomainInfoResp) domain.sendInfo () ;

//-— Output required response attributes using accessors

System.out.println ("domainInfo: name =" 4
response.getName ()) ;

System.out.println ("domainInfo: created by =" 4

response.getCreatedBy ()) ;
System.out.println ("domainInfo: expiration date
response.getExpirationDate()) ;

Il
+

//-— Output additional whois information if returned
if (response.hasExtension (EPPWhoisInfData.class) {
EPPWhoisInfData whois = (EPPWhoisInfData)
response.getExtension (EPPWhoisInfData.class) ;
System.out.println (“domainInfo: registrar = “ +
whois.getRegistrar());
System.out.println (“domainInfo: whois server = “ +
whois.getWhoisServer ()) ;

//-- Output the secDNS:infData extension if returned
if (response.hasExtension (EPPSecDNSExtInfData.class)) {
EPPSecDNSExtInfData infData = (EPPSecDNSExtInfData)
response.getExtension (EPPSecDNSExtInfData.class) ;

Collection dsDataVec = infData.getDsData() ;
EPPSecDNSExtDsData dsData = null;

if (dsDhataVec == null) {
System.out.println ("domainInfo: secDNS:infData
dsDataVec = " + dsDataVec) ;
}
else {
int i = 0;
Iterator iter = dsDataVec.iterator():;
while (iter.hasNext()) {
dsData = (EPPSecDNSExtDsData)iter.next():;

System.out.println ("domainInfo:
secDNS:infData/dsData[" + 1 + "]/keyTag
= " + dsData.getKeyTag());

System.out.println ("domainInfo:
secDNS:infData/dsData[" + 1 + "]/alg =
" + dsData.getAlg());

System.out.println ("domainInfo:
secDNS:infData/dsData[" + i +
"]/digestType = " +
dsData.getDigestType ()) ;

System.out.println ("domainInfo:
secDNS:infData/dsData[" + i + "]/digest

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 99

= " + dsData.getDigest());
System.out.println ("domainInfo:
secDNS:infData/dsData[" + i +
"] /maxSigLife = " 4+
dsData.getMaxSigLife()) ;

EPPSecDNSExtKeyData keyData =
dsData.getKeyData () ;
if (keyData == null) ({

System.out.println ("domainInfo:
secDNS:infData/dsData[" + i +
"]/keyData = " + keyData);

}
else {

System.out.println ("domainInfo:
secDNS:infData/dsData[" + 1 +
"]/keyData/flags = "

+ keyData.getFlags());

System.out.println ("domainInfo:
secDNS:infData/dsData[" + 1 +
"]/keyData/protocol = "

+ keyData.getProtocol())

System.out.println ("domainInfo:
secDNS:infData/dsData[" + 1 +
"]/keyData/alg = "

+ keyData.getAlg()) ;

System.out.println ("domainInfo:
secDNS:infData/dsData[" + 1 +
"]/keyData/pubKey = "

+ keyData.getPubKey ()) ;

i++;
} // end while
}
} // end of try block
catch (EPPCommandException cmdException) {

// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

13.14.1.6 sendUpdate() method
The sendUpdate() method sends the EPP update domain command to the server.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 100

13.14.1.6.1 Pre-Conditions

This method expects that the domain object be populated with the unique identifier of the
domain to be updated and the attributes to change. The following methods must be called
to populate the domain name:

addDomainName(String) — call the add domain name method passing the
unique domain name in preparation for an action method.
setSubProductID(String) — sub-product associated with operation. Use
one of the constants from

com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.

The following list shows the the accessor methods for the optional attributes:

setSecDNSUpdateForAdd(List<EPPSecDNSExtDsData>, boolean) —
Sets the list of <EPPSecDNSExtDsData> instances in order to add
delegation signer information. It also supports setting of an urgent
attribute in the SecDNS update extension which determines the priority of
the request.

setSecDNSUpdateForChg(List<EPPSecDNSExtDsData>, boolean)—
Sets the list of <EPPSecDNSExtDsData> instances in order to change
delegation signer information. It also supports setting of an urgent
attribute in the SecDNS update extension which determines the priority of
the request.

setSecDNSUpdateForRem(List</nteger>, boolean)— Sets the list of
<Integer> instances (i.e key tags of DS records) in order to remove
delegation signer information. It also supports setting of an urgent
attribute in the SecDNS update extension which determines the priority of
the request.

setCoaUpdateForPut(List<EPPCoaExtAttr>) - Sets the list of
<EPPCoaEXxtAttr> instances (which in turn each specify a single
key/value pair) to be associated with the object being updated. If the
object already has a value for one or more of the specified keys, the
existing value will be overwritten by the specified one.
setCoaUpdateForRem(List<EPPCoaExtKey>) - Sets the list of
<EPPCoaExtKey> instances specifying the key portions of existing
key/value pairs to be removed from the object being updated.
addExtension(EPPCodecComponent) — Sets the extension, if any (Ex.
EPPPremiumDomainReAssignCmd for Premium Domain (ReAssign)
extension.)

13.14.1.6.2 Post-Conditions

On success, an EPPResponse is returned, with no attributes.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 101

13.14.1.6.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the
exception is thrown before reading the server response, then getResponse() will return
null.

13.14.1.6.4 Sample Code

The following example shows the steps of performing an update of an domain through
the use of the NSDomain client interface and the sendUpdate() method:

try {
domain.setTransId ("ABC-12345-XYZ") ;
domain.addDomainName ("abcdefg.tv") ;
domain.setSubProductID (NSSubProduct.TV) ;

// Execute update
domain.addHostName ("a.b.com") ;
domain.addHostName ("a.c.com") ;

// instantiate the rem DS Key Tag List
List remKeyTags = new ArrayList();
remKeyTags.add (new Integer(34095));
remKeyTags.add new Integer(10563);

// Call only if server supports updating delegation signer
// information
domain.setSecDNSUpdateForRmv (remKeyTags) ;

// Call only when premium domain (reassign) extension need to be set
EPPPremiumDomainReAssignCmd extension =

new EPPPremiumDomainReAssignCmd () ;
extension.setShortName ("testregistrar") ;
domain.addExtension (extension) ;

response = domain.sendUpdate () ;

} // end of try block

catch (EPPCommandException cmdException) {
// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

13.14.1.7 sendRenew() method
The sendRenew() method sends the EPP renew domain command to the server.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 102

13.14.1.7.1 Pre-Conditions

This method expects that the domain object be populated with the unique identifier of the
domain to be updated and the attributes to change. The following methods must be called
to populate the domain name:

= addDomainName(String) — call the add domain name method passing the
unique domain name in preparation for an action method.

= setSubProductID(String) — sub-product associated with operation. Use
one of the constants from
com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.

= setExpirationDate(Date) — the current expiration date needs to be set to
confirm the renewal.

= SetPeriodUnit(String) — the period for which the domain is to be renewed

13.14.1.7.2 Post-Conditions

On success, an EPPDomainRenewResp is returned, with the following attributes:

= Name — the name of the domain being created.
= ExpirationDate — the new date that the domain is due to be renewed.

13.14.1.7.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the
exception is thrown before reading the server response, then getResponse() will return
null.

13.14.1.7.4 Sample Code

The following example shows the steps of performing an renewal of an domain through
the use of the NSDomain client interface and the sendRenew() method:

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 103

try {
domain.setTransId ("ABC-12345-XYZ") ;
domain.addDomainName ("abcdefg.tv") ;
domain.setSubProductID (NSSubProduct.TV) ;

// Execute update
domain.setExpirationDate (theCurrentExpirationDate) ;
domain.setPeriodUnit ("1") ;

// Set the price value

vector someExtensions = new vector;
someExtensions.addElement (new EPPNSDomBillRenew (“50.00”)) ;
domain.getExtension () .addExtensions (someExtensions) ;

response = (EPPDomainRenewResp) domain.sendRenew () ;

//-—- Output response attributes using accessors
System.out.println ("domainRenew: name = " +
response.getName ()) ;

System.out.println ("domainRenew: ExpirationDate = " +
response.getExpirationDate()) ;

} // end of try block

catch (EPPCommandException cmdException) {
// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

13.14.1.8 sendTransfer() method

The sendTransfer() method sends the EPP transfer domain command to the server. There
are three different operations that can be performed with a sendTransfer() command —
request a transfer, approve a transfer or reject a transfer. A transfer is initiated by the new
registrar sending a transfer request. Once a transfer has been requested, the current
registrar of record will be notified by an external method. The current registrar is then
required to either approve or reject the transfer.

13.14.1.8.1 Pre-Conditions

This method expects that the domain object be populated with the unique identifier of the
domain to be updated and the attributes to change. The following methods must be called
to populate the domain name:

= addDomainName(String) — call the add domain name method passing the
unique domain name in preparation for an action method.

= setSubProductID(String) — sub-product associated with operation. Use
one of the constants from

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 104

com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.

= SetTransferOpCode(String) — sets the operation code for this particular
call. Valid values are “TRANSFER REQUEST”,
“TRANSFER_APPROVE” or “TRANSFER REJECT”

13.14.1.8.2 Post-Conditions

On success, an EPPDomainTransferResp is returned, with attributes depending on the
operation code requested.

For “TRANSFER REQUEST”:

= ActionDate — The date at which the transfer must be approved or rejected
by, otherwise it will be accepted by default.

For “TRANSFER_APPROVE” and “TRANSFER_REJECT” no additional attributres are
set.

13.14.1.8.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the
exception is thrown before reading the server response, then getResponse() will return

null.
13.14.1.8.4 Sample Code

The following example shows the steps of performing a transfer request of a domain
through the use of the NSDomain client interface and the sendTransfer() method:

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 105

try {
domain.setTransId ("ABC-12345-XYZ") ;
domain.addDomainName ("abcdefg.cc") ;
domain.setSubProductID (NSSubProduct.CC) ;
domain.setTransferOpCode ("TRANSFER REQUEST”) ;

// Execute update
response = (EPPDomainTransferResp) domain.sendTransfer () ;

System.out.println ("domainTransfer: Action Date: " +
response.getActionDate ()) ;

} // end of try block

catch (EPPCommandException cmdException) {
// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

The following example shows the steps of performing a transfer approve of a domain
through the use of the NSDomain client interface and the sendTransfer() method:

try {
domain.setTransId ("ABC-12345-XYZ") ;
domain.addDomainName ("abcdefg.cc") ;
domain.setTransferOpCode ("TRANSFER APPROVE”) ;

// Execute update
response = (EPPDomainTransferResp) domain.sendTransfer () ;

} // end of try block

catch (EPPCommandException cmdException) {
// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

The following example shows the steps of performing a transfer reject of a domain
through the use of the NSDomain client interface and the sendTransfer() method:

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 106

try {
domain.setTransId ("ABC-12345-XYZ") ;
domain.addDomainName ("abcdefg.cc") ;
domain.setTransferOpCode ("TRANSFER REJECT”) ;

// Execute update
response = (EPPDomainTransferResp) domain.sendTransfer () ;

} // end of try block

catch (EPPCommandException cmdException) {
// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

13.14.1.9 sendRestoreRequest() method

The sendRestoreRequest() method sends the EPP restore request, which is encoded as an
EPP update command with an rgp:update command/response extension.

13.14.1.9.1 Pre-Conditions

The following list shows the accessor methods for the required attributes:

* addDomainName(String) — add the domain name to the object in
preparation for an action method.

= setSubProductID(String) — sub-product associated with operation. Use
one of the constants from

com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.
13.14.1.9.2 Post-Conditions

On success, an EPPResponse is returned, with no attributes.

13.14.1.9.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the
exception is thrown before reading the server response, then getResponse() will return
null.

13.14.1.94 Sample Code

The following example shows the steps of performing an update of an domain through
the use of the NSDomain client interface and the sendRestoreRequest() method:

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 107

try {
domain.setTransId ("ABC-12345-XYZ") ;
domain.addDomainName ("abcdefg.tv") ;
domain.setSubProductID (NSSubProduct.TV) ;

response = domain.sendRestoreRequest () ;

} // end of try block

catch (EPPCommandException cmdException) {
// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

13.14.1.10 sendRestoreReport() method

The sendRestoreReport() method sends the EPP restore report, which is encoded as an
EPP update command with an rgp:update command/response extension. The EPP restore
report follows a previous call to sendRestoreRequest().

13.14.1.10.1 Pre-Conditions

The following list shows the accessor methods for the required attributes:

* addDomainName(String) — add the domain name to the object in
preparation for an action method.

= setSubProductID(String) — sub-product associated with operation. Use
one of the constants from
com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.

= setReport(EPPRgpExtReport) — Sets the details of the restore report.

13.14.1.10.2 Post-Conditions

On success, an EPPResponse is returned, with no attributes.

13.14.1.10.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the
exception is thrown before reading the server response, then getResponse() will return
null.

13.14.1.10.4 Sample Code
The following example shows the steps of performing an update of an domain through
the use of the NSDomain client interface and the sendRestoreReport() method:

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 108

try {
domain.setTransId ("ABC-12345-XYZ") ;
domain.addDomainName ("abcdefg.tv") ;
domain.setSubProductID (NSSubProduct.TV) ;

EPPRgpExtReport theReport = new EPPRgpExtReport () ;

theReport.setPreData ("Pre-delete whois data goes here. Both XML and
free text are allowed");

theReport.setPostData ("Post-delete whois data goes here. Both XML and
free text are allowed");

theReport.setDeleteTime (new Date()) ;

theReport.setRestoreTime (new Date()) ;

theReport.setRestoreReason (new EPPRgpExtReportText (“Registrant

Error”) ;
: LheReport.setStatementl(new EPPRgpExtReportText (
"This registrar has not"
+ " restored the Registered Domain in order to "
+ "assume the rights to use or sell the Registered"
+ " Name for itself or for any third party"));
theReport.setStatement2 (new EPPRgpExtReportText (
"The information in this report "
+ " is true to best of this registrar's knowledge, and
this"
+ "registrar acknowledges that intentionally supplying
false"

+ " information in this report shall "

+ "constitute an incurable material breach of the
Registry-Registrar"

+ " Agreement"));

theReport.setOther ("other stuff");

// Execute restore report
domain.setReport (theReport) ;
theResponse = domain.sendRestoreReport () ;

} // end of try block

catch (EPPCommandException cmdException) {
// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 109

13.14.1.11 sendSync() method

The sendSync() method sends the EPP restore request, which is encoded as an EPP
update command with an sync:update command/response extension.

13.14.1.11.1 Pre-Conditions

The following list shows the accessor methods for the required attributes:

* addDomainName(String) — add the domain name to the object in
preparation for an action method.

= setSubProductID(String) — sub-product associated with operation. Use
one of the constants from
com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.

= setMonth(int) — Sets the month using a Calendar constant of the target
expiration date.

= setDay(int) — Sets the day of the target expiration date.

13.14.1.11.2 Post-Conditions

On success, an EPPResponse is returned, with no attributes.

13.14.1.11.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the
exception is thrown before reading the server response, then getResponse() will return
null.

13.14.1.11.4 Sample Code

The following example shows the steps of performing an update of an domain through
the use of the NSDomain client interface and the sendSync() method:

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 110

try {
domain.setTransId ("ABC-12345-XYZ") ;
domain.addDomainName ("abcdefg.tv") ;
domain.setSubProductID (NSSubProduct.TV) ;
domain.setMonth (Calendar.JUNE) ;
domain.setDay (15) ;

response = domain.sendSync () ;

} // end of try block

catch (EPPCommandException cmdException) {
// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 111

13.14.2 Host Mapping (NSHost Interface)

The Host Mapping is first handled by the com.verisign.epp.interfaces. EPPHost interface
class, which is extended by the com.verisign.epp.namestore.interfaces. NSHost interface
to add support for common extensions. Convenience methods are provided in NSHost to
make managing hosts easier. For example, the method setSubProductID is provided
instead of having to manually add the EPPNamestoreExtNamestoreExt with each action.

The NSHost interface has the following relevant methods:

Return Value

void

EPPResponse

EPPResponse

EPPResponse

EPPResponse

EPPResponse

EPPResponse

void

void

void

void

Parameters

NSHost (EPPSession aNewSession)

This is the constructor method and it requires an EPP
session object to be passed that has been authenticated
(e.g. logged in).

addHostName(java.lang.String)

This method adds a host name to the object for use
with the action methods.

getResponseO

This method returns the EPP Response for the last
executed command on the interface.

sendCheck ()

This method sends the host check command to the
server.

sendCreate ()

This method sends the host create command to the
server.

sendDelete ()

This method sends the host delete command to the
server.

sendInfo ()

This method sends the host info command to the
server.

sendUpdate ()

This method sends the host update command to the
server.

addIPV4Address(java.lang.String)
This method adds an Ipv4 address to the host object.

removeIPV4Address(java.lang.String)

This method removes an Ipv4 address from the host
object.

setNewName(java.lang.String)

This method sets a new value of the host name for use
with the update method.
addExtension(EPPCodecComponent)

This method sets the EPP extension for the host
object.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

e page 112

Return Value Parameters

Vector getExtensions()
This method gets the EPP extensions for the host
object.
void

setTransId(java.lang.String)

This methods sets the client transaction identifier.

void setSubProductID (String)
Sets the NameStore sub-product id associated with the
action method. The NSSubProduct class includes a set
of constant that can be used as the setSubProductID
argument value.

void addOrgId (EPPOrgExtId)
Adds an org identifier with role for use with
sendCreate ().

Void addUpdateOrgId(int, EPPOrgExtId)

Adds an org identifier with role for use with

sendUpdate ().

Action methods are prefixed with send and are shown in bold in the previous table. Each
action method has a different set of pre-conditions defining what attributes need to be set
with the NSHost setter methods. Each action method will return a response from the
server and will throw an exception if any error occurs. If the exception is associated with
an error response from the server, then the response can be retrieved from the exception
with a call to getResponse(). The following sections describe and provide sample code for
the action methods, the NSHost constructor and methods requiring additional explanation.

13.14.2.1 NSHost() method

The NSHost constructor requires that an authenticated EPPSession object be passed upon
creation. Once created, the NSHost object can perform multiple functions without
reinitializing the EPPSession object. For example, you can use the same initialized
NSHost object to create and info a host with the sendCreate() and sendInfo() commands.

13.14.2.1.1 Pre-Conditions

An authenticated session has been successfully established with an EPPSession.

13.14.2.1.2 Post-Conditions

The NSHost instance is ready for the execution of one or more operations.

13.14.2.1.3 Exceptions

None

13.14.2.1.4 Sample Code

The following example shows the steps of initializing an EPPSession, using the
EPPSession to initialize the NSHost interface, then setting the extension.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 113

EPPSession session = new EPPSession();

// optional

session.setTransId (“ABC-12345-XYZ") ;
session.setVersion (“1.0”);
session.setLang (“Yen”) ;

// required
session.setClientID(“ClientXID”) ;
session.setPassword (“"ClientXPass”) ;

try {
session.initSession () ;

}

catch (EPPCommandException ex) {
ex.printStackTrace() ;
System.exit (1) ;

}

NSHost host = new NSHost (session);

13.14.2.2 sendCheck() method

The sendCheck() method sends the EPP check host command to check the allowable flag
for one or more hosts.

13.14.2.2.1 Pre-Conditions

The following method must be called to populate the host names:

» addHostName(String) — add a host name to the object in preparation for an
action method.

= setSubProductID(String) — sub-product associated with operation. Use
one of the constants from

com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.
13.14.2.2.2 Post-Conditions

On success, an EPPHostCheckResp is returned, with the following attributes:

= Results — the check results are returned in a vector containing one or more
EPPHostCheckResult objects.

13.14.2.2.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the

exception is thrown before reading the Server response, then getResponse() will return
null.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 114

13.14.2.2.4 Sample Code

The following example shows the steps of performing a check on hosts through the use of
the Host client interface and the sendCheck() method:

try {
// Check single host name
host.setTransId ("ABC-12345-XYZ") ;
host.addHostName (“ns.myhost.net”) ;
host.setSubProductID (NSSubProduct.CC) ;

response = (EPPHostCheckResp) host.sendCheck () ;
// Correct number of results?
Assert.assertEquals (1, response.getCheckResults().size());

// For each result

for (int i = 0; i < response.getCheckResults().size(); i++) {
EPPHostCheckResult currResult = (EPPHostCheckResult)
response.getCheckResults () .elementAt (1) ;
if (currResult.isAvailable()) {
System.out.println ("hostCheck: Host " +
currResult.getName () + " is available");
} else {
System.out.println ("hostCheck: Host " +
currResult.getName () + " is not available");

}
}
} // end of try block
catch (EPPCommandException cmdException) {

// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

13.14.2.3 sendCreate() method
The sendCreate() method sends the EPP create host command to the server.

13.14.2.3.1 Pre-Conditions

This method expects that the host object be populated with the name and address of the
host to be created. The following methods must be called to populate the host name and
address:

» addHostName(String) — add a host name to the object in preparation for an

action method.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 115

= setSubProductID(String) — sub-product associated with operation. Use
one of the constants from
com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.

= setIPV4Address(String) or setlPV6Address(String) — add an Ipv4 or Ipv6
address to the host object.

13.14.2.3.2 Post-Conditions

On success, an EPPHostCreateResp is returned, with the following attributes:

= Name — the host name that was successfully created is returned in the
response.

13.14.2.3.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. 1If the
exception is thrown before reading the Server response, then getResponse() will return
null.

13.14.2.3.4 Sample Code

The following example shows the steps of performing a create of a host through the use
of the NSHost client interface and the sendCreate() method:

try {

host.setTransId ("ABC-12345-XYZ") ;
host.addHostName (“ns.myhost.net”) ;
host.setIPV4Address (V123.34.34.2");
host.setSubProductID (NSSubProduct.NET) ;

response = (EPPHostCreateResp) host.sendCreate() ;
System.out.println (“Host created: “ + response.getName ()) ;

} // end of try block
catch (EPPCommandException cmdException) {

// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

13.14.2.4 sendDelete() method

The sendDelete() method sends the EPP delete host command to the server. This method
requires that no domains are associated with the host prior to deletion. If there are
domains associated with the host the delete will fail.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 116

13.14.2.4.1 Pre-Conditions

This method expects that the host object be populated with the name of the host to be
deleted. The following method must be called to populate the host name:

» addHostName(String) — add a host name to the object in preparation for an
action method.

= setSubProductID(String) — sub-product associated with operation. Use
one of the constants from

com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.

13.14.2.4.2 Post-Conditions

On success, a standard EPPResponse is returned.

13.14.2.4.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the
exception is thrown before reading the Server response, then getResponse() will return
null.

13.14.2.4.4 Sample Code

The following example shows the steps of performing a delete of a host through the use
of the NSHost client interface and the sendDelete() method:

try {
host.setTransId ("ABC-12345-XYZ") ;
host.addHostName (“ns.myhost.net”) ;
host.setSubProductID (NSSubProduct.NET) ;
response = (EPPResponse) host.sendDelete() ;

System.out.println (VYEPP Response: “ + response);

} // end of try block
catch (EPPCommandException cmdException) {

// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page 117

13.14.2.5 sendInfo() method
The sendInfo() method sends the EPP info host command to the server.

13.14.2.5.1 Pre-Conditions

This method expects that the host object be populated with a single host name of the host
to be queried. The following method must be called to populate the host name:

» addHostName(String) — add a host name to the object in preparation for an
action method.

= setSubProductID(String) — sub-product associated with operation. Use
one of the constants from
com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.

13.14.2.5.2 Post-Conditions

On success, an EPPHostInfoResp is returned, with the following attributes:

= name — the fully qualified host name.
= address — the Ipv4 or Ipv6 address of the host.

= Registrarld — the identifier of the registrar the contact was created by.

13.14.2.5.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the
exception is thrown before reading the Server response, than getResponse() will return
null.

13.14.2.54 Sample Code

The following example shows the steps of querying an host through the use of the
NSHost client interface and the sendInfo() method:

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 118

try {

host.setTransId ("ABC-12345-XYZ") ;
host.addHostName (“ns.myhost.net”) ;
host.setSubProductID (NSSubProduct.NET) ;

response = (EPPHostInfoResp)

System.out.println ("hostInfo:

EPPHostAddress currAddress =

System.out.println ("hostInfo:

// IPV4 Address?
if (currAddress.getType () ==

System.out.println (",

host.sendInfo () ;
name = " + response.getName()) ;

(EPPHostAddress)
e = W) 7

response.getAddress () ;

EPPHostAddress.IPV4) {
type = IPV4");

} // IPV6 Address?
else if (currAddress.getType ()
System.out.println (",

== EPPHostAddress.IPV4) {
type = IPV6");
}

System.out.println ("hostInfo: registrar = " +
response.getRegistrar());

} // end of try block
catch (EPPCommandException cmdException) {

// do something to handle the exception
handleException (cmdException) ;

} // end of catch block

13.14.2.6 sendUpdate() method
The sendUpdate() method sends the EPP update host command to the server.

13.14.2.6.1 Pre-Conditions

This method expects that the host object be populated with the name of the host to be
updated and the Ipv4 or Ipv6 address to change. The following methods must be called to
populate the host name with a new address:

» addHostName(String) — add a host name to the object in preparation for an
action method.

= setSubProductID(String) — sub-product associated with operation. Use
one of the constants from
com.verisign.epp.namestore.interfaces. NSSubProduct or the TLD value
going forward.

= addIPV4Address (String) or addIPV6Address (String) — add an Ipv4 or
Ipv6 address to the host object.

= removelPV4Address (String) or removelPV4Address (String) — remove
an Ipv4 or Ipv6 address from the host object.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 119

13.14.2.6.2 Post-Conditions

On success, a standard EPPResponse is returned.

13.14.2.6.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the
exception is thrown before reading the Server response, then getResponse() will return
null.

13.14.2.6.4 Sample Code

The following example shows the steps of performing an update of a host through the use
of the NSHost client interface and the sendUpdate() method:

try {
host.setTransId ("ABC-12345-XYZ") ;
host.addHostName (“ns.myhost.net”) ;
host.setSubProductID (NSSubProduct.NET) ;

// set new IP address
host.addIPV4Address (“123.34.34.12");

// remove old IP address
host.removeIPV4Address (V"123.34.34.66") ;

response = (EPPResponse) host.sendUpdate () ;

System.out.println (“Host updated: “ + response);
} // end of try block
catch (EPPCommandException cmdException) {
// do something to handle the exception
handleException (cmdException) ;
} // end of catch block

13.14.2.7 NSHost Support Classes

The Host package, com.verisign.epp.codec.host, contains additional classes required for
host provisioning and maintenance. The package contains the following relevant classes:

Class Description

EPPHostAddress This class is used by the sendinfo() method for
encapsulating Ipv4 and Ipv6 addresses.

EPPHostCheckResult This class is used by the sendCheck() method for
returning the allowable flag for multiple hosts being
checked.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 120

13.14.2.8 EPPHostAddress
The EPPHostAddress class is used by the sendInfo() method for encapsulating Ipv4 and
Ipv6 addresses. The getType() method should be used for determining whether the
address is an Ipv4 or Ipv6 address. The getName() and getAddress() methods return the
host name and IP address, respectively, for the host queried. Please refer to the previous
sections for sample code demonstrating the use of the EPPHostAddress class.

13.14.2.9 EPPHostCheckResult

The EPPHostCheckResult class is used by the sendCheck() method for returning the
allowable flag for multiple hosts. The isAvailable() method of this class returns true if the
host is available and false if the host is not available.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 121

13.14.3 Contact Mapping (NSContact Interface)

This section is intended to provide users of the Extensible Provisioning Protocol (EPP)
Software Development Kit (SDK) with an overview of the Contact, additions to the SDK.
This document includes the following Contact information:

1. Definition of the Contact files (i.e. library, schema)

2. Description of the Contact interface class, including the pre-conditions, the post-
conditions, the exceptions and sample code of each of the action methods.

The SDK provides detailed interface information in HTML Javadoc. This document does
not duplicate the detailed interface information contained in the HTML Javadoc.
Descriptions are provided for the Contact interface elements, the pre-conditions, the post-
conditions, and example code.

It is assumed that the reader has reviewed the associated EPP Specifications and has a
general understanding of the EPP concepts. Much of the EPP details are encapsulated in the
SDK, but having a solid understanding of the EPP concepts will help in effectively using the
SDK.

The Contact Mapping is first handled by the com.verisign.epp.interfaces. EPPContact
interface class, which is extended by the com.verisign.epp.namestore.interfaces. NSContact
interface to add support for common extensions. Convenience methods are provided in
NSContact to make managing domains easier. For example, the method setSubProductID is
provided instead of having to manually add the EPPNamestoreExtNamestoreExt with each
action.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page 122

13.14.3.1 Contact Mapping Packages

Contact consists of sub-packages of the SDK packages and class additions to existing SDK
packages. The following table provides an overview of the SDK packages.

Package Description

com.verisign.epp.codec.contact Contact EPP Encoder/Decoder package. All of the detail of
encoding and decoding the Contact EPP messages are
encapsulated in this package. The EPPContactMapFactory
must be added to the EPP.MapFactories configuration
parameter.

com.verisign.epp.interfaces Addition of the EPPContact Client interface class, which is
the primary class used by a Contact SDK client.

com.verisign.epp.serverstub Addition of the com.verisign.epp.serverstub.ContactHandler
class used to implement the EPP Contact Stub Server
behavior. This class must be added to the
EPP.ServerEventHandlers configuration parameter.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 123

13.14.3.2 Contact Mapping XML Schema Files

The Contact EPP Mapping is defined using XML schema files. These files are located
in the epp-contact.jar in the schemas directory. You must un-jar the jar file in order to
explicitly view them.

File Name Location Description

contact-1.0.xsd schemas Contact XML Schema. This file must reside in
the current directory of the client application and
the EPP Stub Server.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 124

13.14.3.3 Contact Client Interface
13.14.3.3.1 Overview

Figure 11 - EPPContact Class Diagram shows the class diagram for EPPContact, which is the
primary interface used for managing Contact objects. Some classes out of the
com.verisign.epp.codec.gen are used to support the interface. There is a reference from
EPPContact to an EPPSession. The action methods are prefixed with send, and each action
method has a different set of pre-conditions defining what attributes need to be set with the
EPPContact setter methods. Each action method will return a response from the EPP Server and
will throw an exception if any error occurs. If the exception is associated with an error response
from the EPP Server, than the response can be retrieved from the exception with a call to
getResponse().

EPPContact

+EPPContact{newSession:EPPSession)
+addExtension(aExtension:EPPCodecComponent): void
+setExtension{aExtension:EPPCodecComponent): void
+setExtensions{aExtensions: Yector):void
+getExtensions{):vVector
+setTransferOpCode{newTransferOpCode: String):void
+qgetPostallnfo():Vector
+setPostallnfo{newPostalContacts:java. util, Yector):void
+addPostallnfo{newPostalContact:EPPContactPostalDefinition): void
+getDisclose():com. verisign.epp.codec.contact . EPPContactDisclose
+setDisclose{newDisclose:com, verisign.epp.codec. contact EPPContactDisclose): void
+setYoicePhone{newYoicePhone: String): void
+setvoiceExt{newvoiceExt: String):void
+setFaxhumber(newFaxhumber:String):void
+setFaxExt{newFaxExt:String):void

+setEmail{newEmail: String):void

+getyoicePhone():String

+getFaxNumber():String

+qgetFaxExt():String

+qgetEmail{):String

+addStatus{aStatus:String):void

+removeStatus(aStatus: String):void
+addStatus{aStatus: String, aDesc:String, aLang:String):void
+removeStatus{aStatus:String, aDesc:String, alang:String):void
+getaddStatus():Vector

+getRemaoveStatus):Yector
+addContactId{newContactId:String):void
+setAuthorizationId{newAuthorizationId: String): void
+setTransId{newTransId:String):void

+qgetTransId{):String

+getAuthorizationId():String

+getResponse():EPPResponse

+sendCreate():EPPResponse
+sendCheck():EPPContactCheckResp
+sendInfo():EPPContactInfoResp

+sendUpdate():EPPResponse
+sendTransfer():EPPContactTransferResp
+sendDelete():EPPResponse

-resetContact():void

Figure 11 - EPPContact Class Diagram

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 125

13.14.3.3.2 Initialization

This section shows how an EPPContact is initialized. After each operation, EPPContact resets
itself so that it can be used for more than one operation. For example, you can use the same
initialized EPPContact to create a Contact with sendCreate(), than use it again to delete a
Contact with sendDelete(). The attributes have to be set/reset before each call to an operation.

1.1.1.1.1.1 Pre-Conditions

An authenticated session has been successfully established with an EPPSession.

1.1.1.1.1.2 Post-Conditions

The EPPContact instance is ready for the execution of one or more operations.

1.1.1.1.1.3 Exceptions
None

1.1.1.1.1.4 Sample Code

Figure 12 - EPPContact Initialization Sample Code shows the steps of initializing an
EPPSession, than using the EPPSession to initialize and EPPContact.

EPPSession session = new EPPSession();
session.setClientID(“ClientX”) ;
session.setPassword (“ClientXPass”) ;
session.setTransId (YABC-12345") ;

try {
session.initSession () ;

}

catch (EPPCommandException ex) {
ex.printStackTrace() ;
System.exit (1) ;

}

EPPContact contact = EPPContact (session) ;

Figure 12 - EPPContact Initialization Sample Code

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

e page 126

13.14.3.3.3 sendCreate() Method

Creates a Contact using this method. sendCheck() can be used to check the availability of a
Contact before invoking sendCreate().

1.1.1.1.1.5 Pre-Conditions
The following methods must be called:

addContactld(String) — Contact ID.

addPostallnfo(EPPContactPostalDefinition) — Sets the postal information of the contact.
setEmail(String) — Sets the email address of the contact.

setAuthorizationld(String) - Authorization string, which is provided by client.

The following methods can be called:

setVoicePhone(String) — Sets the voice phone number for the contact.
setVoiceExt(String) — Sets the extension for the voice phone number of the contact.
setFaxNumber(String) — Sets the fax number for the contact

setFaxExt(String) — Sets the extension for the fax number of the contact
setDisclose(EPPContactDisclose) — Sets the disclose information about the contact.
addExtension(EPPCodecComponent) — Sets the extension, if any

setTransld(String) — Client transaction identifier, which is mirrored back in the response.

1.1.1.1.1.6 Post-Conditions

The Contact was successfully created. EPPContactCreateResp is returned, with the following
attributes:

<epp:extension> - EPPResponse.getExtension() if response contains extension
<epp:trID> - EPPResponse.getTransld()

<contact:id> — EPPContactCreateResp.getld()

<contact:crDate> — EPPContactCreateResp.getCreationDate()

This response does not have Contact related information except for the creation date. The
response may not even contain an extension.

1.1.1.1.1.7 Exceptions

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide ® page 127

EPPCommandException that contains the EPPResponse returned from the EPP Server. The
getResponse() method returns the associated EPPResponse. If the exception is thrown before
reading the EPP Server response, than getResponse() will return null.

1.1.1.1.1.8 Sample Code

Figure 13 - sendCreate() Sample Code shows the steps of creating a Contact. On success,
EPPContactCreateResp is returned, which contains the contact Id and creation date. If an error
occurs, EPPCommandException is thrown, and if the error was the result of an EPP Server
response, than the response can be retrieved from the exception.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 128

try {

contact.setTransId ("ABC-12345-XYZ") ;
contact.setAuthorizationId ("ClientXYZz") ;
contact.addContactId (“sh8013”) ;
contact.setVoicePhone ("+1.7035555555") ;
contact.setVoiceExt ("123") ;
contact.setFaxNumber ("+1.7035555556") ;
contact.setFaxExt ("456") ;
contact.setEmail ("jdoelexample.com") ;

// Streets

Vector streets = new Vector();
streets.addElement ("123 Example Dr.");
streets.addElement ("Suite 100") ;
streets.addElement ("This is third line");

EPPContactAddress address = new EPPContactAddress() ;
address.setStreets (streets) ;

address.setCity ("Dulles") ;
address.setStateProvince ("VA") ;
address.setPostalCode ("20166-6503") ;
address.setCountry ("US") ;

EPPContactPostalDefinition name = new EPPContactPostalDefinition (
EPPContactPostalDefinition.ATTR TYPE LOC) ;

name.setName ("John Doe") ;

name.setOrg ("Example Inc.");

name.setAddress (address) ;

contact.addPostalInfo (name) ;

// this is not a valid Example but it will do
EPPContactAddress Intaddress = new EPPContactAddress() ;

Intaddress.setStreets (streets) ;

Intaddress.setCity ("Dulles") ;

Intaddress.setStateProvince ("VA") ;

Intaddress.setPostalCode ("20166-6503") ;

Intaddress.setCountry ("US") ;

EPPContactPostalDefinition Intname = new EPPContactPostalDefinition (
EPPContactPostalDefinition.ATTR TYPE INT);

Intname.setName ("John Doe") ;

Intname.setOrg ("Example Inc.");

Intname.setAddress (Intaddress) ;

contact.addPostalInfo (Intname) ;

// disclose names
Vector names = new Vector();

// names.addElement (new

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 129

// EPPContactDiscloseName (EPPContactDiscloseName.ATTR TYPE LOC)) ;

names.addElement (new EPPContactDiscloseName (
EPPContactDiscloseName.ATTR TYPE INT));

// disclose orgs

Vector orgs = new Vector():;
orgs.addElement (new EPPContactDiscloseOrg (
EPPContactDiscloseOrg.ATTR TYPE LOC)) ;
orgs.addElement (new EPPContactDiscloseOrg (
EPPContactDiscloseOrg.ATTR TYPE INT));

// disclose addresses
Vector addresses = new Vector():;
addresses.addElement (new EPPContactDiscloseAddress (

EPPContactDiscloseAddress.ATTR TYPE LOC)) ;
addresses.addElement (new EPPContactDiscloseAddress (

EPPContactDiscloseAddress.ATTR TYPE INT));

// disclose

EPPContactDisclose disclose = new EPPContactDisclose();
disclose.setFlag("0") ;

disclose.setNames (names) ;

disclose.setOrgs (orgs) ;

disclose.setAddresses (addresses) ;
disclose.setVoice ("");

disclose.setFax ("");

disclose.setEmail ("") ;

contact.setDisclose (disclose) ;

response = (EPPContactCreateResp) contact.sendCreate();

// -- Output all of the response attributes

System.out.println ("contactCreate: Response = [" + response
+ "J\n\n");

System.out.println ("Contact ID : " + response.getId());

System.out.println ("Contact Created Date : " +

response.getCreationDate()) ;

}

Figure 13 - sendCreate() Sample Code
13.14.3.34 sendCheck() Method

Checks the availability of one or more Contact objects.

1.1.1.1.1.9 Pre-Conditions
The following methods must be previously called:

e addContactld(String) — Contact 1d.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

e page 130

The following methods can be previously called:

e setTransId(String) — Client transaction identifier, which is mirrored back in the response.

1.1.1.1.1.10 Post-Conditions
The Contact was successfully checked. EPPContactCheckResp is returned with the following
attributes:

e <epp:extension> - EPPResponse.getExtension() if response contains extension

o <epp:trID> - EPPResponse.getTransld()

e A Vector of EPPContactCheckResult objects — EPPContactInfoResp.getCheckResults().
Each EPPContactCheckResult object contains the following attributes:

o <contact:id> - EPPContactCheckResult.getld()

o <contact:reason> - EPPContactCheckResult.getContactReason()

1.1.1.1.1.11 Exceptions

EPPCommandException that contains the EPPResponse returned from the EPP Server. The
getResponse() method returns the associated EPPResponse. If the exception is thrown before
reading the EPP Server response, than getResponse() will return null.

1.1.1.1.1.12 Sample Code

Figure 9 - sendCheck() Sample Code shows the steps of creating EPPContactCheckResp. If an
error occurs, EPPCommandException is thrown, and if the error was the result of an EPP Server
response, than the response can be retrieved from the exception.

try {
contact.setTransId ("ABC-12345") ;
contact.addContactId (“sh8013”) ;

EPPContactCheckResp response = contact.sendCheck();

// For each result
for (int i = 0; i < response.getCheckResults () .size(); i++) {
EPPContactCheckResult currResult = (EPPContactCheckResult) response
.getCheckResults () .elementAt (1) ;

if (currResult.isAvailable()) {
System.out.println ("contactCheck: Contact "
+ currResult.getId() + " is available");
}
else {
System.out.println ("contactCheck: Contact "
+ currResult.getId() + " is unavailable");

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 131

}
}

catch (EPPCommandException ex) {

EPPResponse response = (EPPResponse) ex.getResponse() ;
if (response != null)
System.err.println ("Contact Check response error: " + ex +
", response = " + response);
else
System.err.println ("Contact Check exception: " + ex);

}

Figure 9 - sendCheck() Sample Code

13.14.3.3.5 sendInfo() Method

Retrieves the Contact information.

1.1.1.1.1.13 Pre-Conditions
The following methods must be previously called:

e addContactld(String) — Contact 1d.

The following methods can be previously called:

e setTransld(String) — Client transaction identifier, which is mirrored back in the response.

The Contact must exist.

1.1.1.1.1.14 Post-Conditions

The Contact information was successfully retrieved. EPPContactInfoResp contains the Contact
information with the following attributes:

e <epp:extension> - EPPResponse.getExtension() if response contains extension

o <epp:trID> - EPPResponse.getTransld()

e <contact:id> - EPPContactInfoResp.getld() Gets the Contact ID

e <contact:roid> — EPPContactinfoResp.getRoid() Gets the Contact ROID

e <contact:status> - EPPContactInfoResp.getStatuses() Gets the vector of statuses

e <contact:postalinfo> - EPPContactInfoResp.getPostallnfo() Gets the Contact Postal Info
e <contact:voice> - EPPContactInfoResp.getVoice() Gets the Contact Voice number

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 132

e <contact:fax> - EPPContactlnfoResp.getFax() Gets the Contact Fax number
e <contact:email> - EPPContactinfoResp.getEmail() Gets the Contact Email address
e <contact:clld> - EPPContactInfoResp.getClientld() Gets the Contact Client ID

e <contact:crDate> - EPPContactInfoResp.getCreatedDate () Gets the Contact Creation
date

e <contact:trDate> - EPPContactinfoResp.getLastTransferDate() Gets the Contact last
transfer date

e <contact:authInfo> - EPPContactInfoResp.getAuthinfo() Gets the Contact Authorization
information

e <contact:disclose> - EPPContactinfoResp.getDisclose() Gets the Contact disclose
information

1.1.1.1.1.15 Exceptions

EPPCommandException that contains the EPPResponse returned from the EPP Server. The
getResponse() method returns the associated EPPResponse. If the exception is thrown before
reading the EPP Server response, than getResponse() will return null.

1.1.1.1.1.16 Sample Code

Figure 14 - sendInfo() Sample Code shows the steps of creating EPPContactInfoResp. If an
error occurs, EPPCommandException is thrown, and if the error was the result of an EPP Server
response, than the response can be retrieved from the exception.

try {
EPPContactInfoResp contactResponse;

System.out.println ("JobsContact: Contact Info");

contact.setTransId ("ABC-12345-XYZ") ;
contact.addContactId ("helloworld") ;

contactResponse = contact.sendInfo();
System.out.println ("contactInfo: id = " + response.getId()):;
Vector postalContacts = null;

if (response.getPostalInfo().size() > 0) {
postalContacts = response.getPostalInfo();

for (int j = 0; j < postalContacts.size(); j++) {

// Name
System.out.println ("contactInfo:\t\tname = "

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 133

+ ((EPPContactPostalDefinition) postalContacts
.elementAt (j)) .getName ()) ;

// Organization

System.out.println ("contactInfo:\t\torganization = "
+ ((EPPContactPostalDefinition) postalContacts
.elementAt (j)) .getOrg()) ;

EPPContactAddress address =
((EPPContactPostalDefinition)postalContacts
.elementAt (j)) .getAddress () ;

for (int i = 0; i < address.getStreets().size(); i++) {
System.out.println ("contactInfo:\t\tstreet" + (i + 1)
+ " = " + address.getStreets().elementAt(i));

}

// Address City
System.out.println ("contactInfo:\t\tcity = " +
address.getCity()) ;

// Address State/Province
System.out.println ("contactInfo:\t\tstate province = "
+ address.getStateProvince()) ;

// Address Postal Code
System.out.println ("contactInfo:\t\tpostal code = "
+ address.getPostalCode()) ;

// Address County
System.out.println ("contactInfo:\t\tcountry = "
+ address.getCountry());

// Contact E-mail
System.out.println ("contactInfo:\temail = " + response.getEmail ());

// Contact Voice
System.out.println ("contactInfo:\tvoice = " + response.getVoice())

// Contact Voice Extension
System.out.println ("contactInfo:\tvoice ext
+ response.getVoiceExt ()) ;

"w

// Contact Fax
System.out.println ("contactInfo:\tfax = " + response.getFax()) ;

// Contact Fax Extension
System.out.println ("contactInfo:\tfax ext = "
+ response.getFaxExt ());

// Client Id
System.out.println ("contactInfo: client id = "

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 134

//

+ response.getClientId()) ;

Created By

System.out.println ("contactInfo: created by = "

//

+ response.getCreatedBy()) ;

Created Date

System.out.println ("contactInfo: create date = "

//
//
if

//
if

//
if

//
if

//
if

//
if

//
if

}

+ response.getCreatedDate()) ;

-—- Output optional response attributes using accessors
Contact Fax
(response.getFax () !'= null) {
System.out.println ("contactInfo:\tfax = " +
response.getFax()) ;

Contact Voice

(response.getVoice() != null) {
System.out.println ("contactInfo:\tVoice = "
+ response.getVoice());

Last Updated By
(response.getLastUpdatedBy () != null) {
System.out.println ("contactInfo: last updated by = "
+ response.getLastUpdatedBy ()) ;

Last Updated Date

(response.getlLastUpdatedDate () != null) {
System.out.println ("contactInfo: last updated date = "
+ response.getlastUpdatedDate()) ;

Last Transfer Date

(response.getlLastTransferDate () != null) {
System.out.println ("contactInfo: last updated date
+ response.getlastTransferDate()) ;

Authorization Id

(response.getAuthInfo () !'= null) {
System.out.println ("contactInfo: authorization info = "
+ response.getAuthInfo () .getPassword()) ;

Disclose

(response.getDisclose() != null) {

System.out.println ("contactInfo: disclose info = "
+ response.getDisclose());

Figure 14 - sendInfo() Sample Code

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

e page 135

13.14.3.3.6 sendUpdate() Method

Updates the attributes of a Contact.

1.1.1.1.1.17 Pre-Conditions
The following methods must be previously called:

e addContactld(String) — Contact 1d.

The following methods can be previously called:
o setTransld(String) — Client transaction identifier, which is mirrored back in the response.
o addExtension(EPPCodecComponent) — Command extension, if any.
e addStatus(String) — Contact status
e addPostallnfo(EPPContactPostalDefinition) — Adding postal information
e setVoicePhone(String) — Update voice number
o setFaxNumber(String) — Update fax number
o setAuthorizationld(String) — Update authorization information

o setDisclose(EPPContactDisclose) — Updates the contact disclose information

The Contact must exist.

1.1.1.1.1.18 Post-Conditions
The Contact was successfully updated. EPPResponse is returned, with the following attributes:

e <epp:extension> - EPPResponse.getExtension() if response contains extension

o <epp:trID> - EPPResponse.getTransld()

1.1.1.1.1.19 Exceptions

EPPCommandException that contains the EPPResponse returned from the EPP Server. The
getResponse() method returns the associated EPPResponse. If the exception is thrown before
reading the EPP Server response, than getResponse() will return null.

1.1.1.1.1.20 Sample Code

Figure 15 - sendUpdate() Sample Code shows the steps of creating EPPResponse. If an error
occurs, EPPCommandException is thrown, and if the error was the result of an EPP Server
response, than the response can be retrieved from the exception.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 136

try {
contact.setTransId ("ABC-12345-XYZ") ;
contact.addContactId (“sh8013”) ;

// Streets

Vector streets = new Vector();
streets.addElement ("123 Example Dr.");
streets.addElement ("Suite 100") ;
streets.addElement ("This is third line");

// Address
EPPContactAddress address = new EPPContactAddress (streets,
"Dulles", "VA", "20166-6503", "UsS");

EPPContactPostalDefinition postal = new EPPContactPostalDefinition (
"Joe Brown", "Example Corp.",

EPPContactPostalDefinition.ATTR TYPE LOC, address):;

// statuses

contact.addStatus (EPPContact.STAT PENDING DELETE) ;
contact.addPostalInfo (postal) ;
contact.setVoicePhone ("+1.7035555555") ;
contact.setVoiceExt ("456") ;

contact.setFaxNumber ("+1.7035555555") ;
contact.setFaxExt ("789") ;
contact.setAuthorizationId ("ClientXYZz") ;

// disclose names
Vector names = new Vector();

// names.addElement (new

// EPPContactDiscloseName (EPPContactDiscloseName.ATTR TYPE LOC)) ;

names.addElement (new EPPContactDiscloseName (
EPPContactDiscloseName.ATTR TYPE INT));

// disclose orgs

Vector orgs = new Vector():;

orgs.addElement (new EPPContactDiscloseOrg (
EPPContactDiscloseOrg.ATTR TYPE LOC)) ;

orgs.addElement (new EPPContactDiscloseOrg (
EPPContactDiscloseOrg.ATTR TYPE INT))

// disclose addresses
Vector addresses = new Vector():;
addresses.addElement (new EPPContactDiscloseAddress (

EPPContactDiscloseAddress.ATTR TYPE LOC)) ;
addresses.addElement (new EPPContactDiscloseAddress (

EPPContactDiscloseAddress.ATTR TYPE INT));

// disclose

EPPContactDisclose disclose = new EPPContactDisclose();
disclose.setFlag("0") ;

disclose.setNames (names) ;

disclose.setOrgs (orgs) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 137

disclose.setAddresses (addresses) ;

disclose.setVoice ("");
disclose.setFax ("");
disclose.setEmail ("");

contact.setDisclose (disclose) ;

response = contact.sendUpdate() ;
// -- Output all of the response attributes
System.out.println ("contactUpdate: Response = [" + response

+ "]\n\n") ;
} catch (EPPCommandException e) {
handleException (e) ;

}

Figure 15 - sendUpdate() Sample Code

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 138

13.14.3.3.7 sendDelete() Method

Deletes a Contact.
1.1.1.1.1.21 Pre-Conditions
The following methods must be previously called:

e addContactld(String) — Contact 1d.

The following methods can be previously called:
e setTransld(String) — Client transaction identifier, which is mirrored back in the response.

o setExtension(EPPCodecComponent) — Command extension to send with command.

The Contact must exist.

1.1.1.1.1.22 Post-Conditions
The Contact was successfully deleted. EPPResponse is returned, with the following attributes:

e <epp:extension> - EPPResponse.getExtension() if response contains extension

o <epp:trID> - EPPResponse.getTransld()

1.1.1.1.1.23 Exceptions

EPPCommandException that contains the EPPResponse returned from the EPP Server. The
getResponse() method returns the associated EPPResponse. If the exception is thrown before
reading the EPP Server response, than getResponse() will return null.

1.1.1.1.1.24 Sample Code

Figure 10 - sendDelete() Sample Code shows the steps of creating EPPResponse. If an error
occurs, EPPCommandException is thrown, and if the error was the result of an EPP Server
response, than the response can be retrieved from the exception.

try {
contact.setTransId ("ABC-12345") ;
contact.addContactId (“sh8013”) ;

EPPResponse response = contact.sendDelete() ;
System.out.println ("Contact Delete success response: " + response);

}

catch (EPPCommandException ex) {

EPPResponse response = (EPPResponse) ex.getResponse() ;
if (response != null)
System.err.println ("Contact Delete response error: " + ex +
", response = " + response);

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 139

}

else
System.err.println ("Contact Delete exception: " + ex);

Figure 10 - sendDelete() Sample Code

13.143.3.8 sendTransfer() Method

Transfer a Contact.

1.1.1.1.1.25 Pre-Conditions
The following methods must be previously called:

addContactld(String) — Contact ID.

setAuthorizationld(String) — Authorization Information. This is required when a transfer
is requested.

setTransferOpCode(String) — Transfer operation as defined by one of the
EPPContact. TRANSFER _constants. For example, EPPContact. TRANSFER REQUEST.

The following methods can be previously called:

setTransld(String) — Client transaction identifier, which is mirrored back in the response.

setExtension(EPPCodecComponent) — Command extension to send with command.

The Contact must exist.

1.1.1.1.1.26 Post-Conditions

The Contact transfer operation was successfully processed. EPPContactTransferResp is returned
with the following attributes:

<epp:extension> - EPPResponse.getExtension() if response contains extension
<epp:trID> - EPPResponse.getTransld()

<contact:id> — EPPContactTransferResp.getld()

<contact:trStatus> — EPPContactTransferResp.getTransferStatus()
<contact:reID> — EPPContactTransferResp.getRequestClient()
<contact:reDate> — EPPContactTransferResp.getRequestDate()
<contact:acID> — EPPContactTransferResp.getActionClient()
<contact:acDate> — EPPContactTransferResp.getActionDate()

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 140

1.1.1.1.1.27 Exceptions

EPPCommandException that contains the EPPResponse returned from the EPP Server. The
getResponse() method returns the associated EPPResponse. If the exception is thrown before

reading the EPP Server response, than getResponse() will return null.

1.1.1.1.1.28 Sample Code

Figure 11 - sendTransfer() Sample Code shows the steps of creating EPPContactTransferResp.
If an error occurs, EPPCommandException is thrown, and if the error was the result of an EPP

Server response, than the response can be retrieved from the exception.

try {
contact.setTransferOpCode (EPPContact.TRANSFER REQUEST) ;
contact.setTransId ("ABC-12345-XYZ") ;
contact.setAuthorizationId ("ClientX") ;
contact.addContactId (“sh8013”) ;

// Execute the transfer request

response = contact.sendTransfer () ;

// -- Output all of the response attributes

System.out.println ("contactTransfer: Response = [" + response
+ "I\n\n");

// —- Output required response attributes using accessors

System.out.println ("contactTransfer: id = " + response.getId())

System.out.println ("contactTransfer: request client = "
+ response.getRequestClient ()) ;

System.out.println ("contactTransfer: action client =
+ response.getActionClient ());

System.out.println ("contactTransfer: transfer status =
+ response.getTransferStatus());

System.out.println ("contactTransfer: request date =
+ response.getRequestDate()) ;

System.out.println ("contactTransfer: action date =
+ response.getActionDate()) ;

"w
"w

"w

}

catch (EPPCommandException ex) {

EPPResponse response = (EPPResponse) ex.getResponse() ;
if (response != null)
System.err.println ("Contact Transfer response error: " + ex +
", response = " + response);
else
System.err.println ("Contact Transfer exception: " + ex);

}

I

Figure 11 - sendTransfer() Sample Code

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

e page 141

13.14.4 Registry Mapping
This section is intended to provide users of the Extensible Provisioning Protocol (EPP)
Software Development Kit (SDK) with an overview of the Registry Mapping
(Propriatary and IETF draft versions) additions to the SDK. This document includes the
following Registry information:

1. Definition of the Registry SDK files (i.e. library, schema)

2. Description of the Registry interface classes, including the pre-conditions, the
post-conditions, the exceptions, the EPP status codes, and sample code of each
of the action methods.

The SDK provides detailed interface information in HTML Javadoc format. This
document does not duplicate the detailed interface information contained in the HTML
Javadoc. Descriptions are provided of the main Registry interface elements, the pre-
conditions, the post-conditions, and example code.

It is assumed that the reader has reviewed the associated EPP specifications and has a
general understanding of the EPP concepts. Much of the EPP details are encapsulated in
the SDK, but having a solid understanding of the EPP concepts will help in effectively
using the SDK.

13.14.4.1 Registry Tests

The Registry source distribution contains one test program for each Registry EPP
Mapping the product uses. The tests are located in the suggestion/java directory in
com.verisign.epp.interfaces package. The following table describes the test files:

Test Description
EPPRegistryTst.java This is a sample program demonstrating the use of the
EPPRegistry class.

The com.verisign.epp.interfaces. EPPRegistryTst is used
to test the proprietary version of the Registry Mapping.

The com.verisign.epp.interfaces.v02. EPPRegistryTst is
used to test v04 of the Registry Mapping, which is
defined in draft-gould-carney-regext-registry-04.

13.14.4.2 Registry Packages

The Registry portion of the Verisign Bundle EPP SDK consists of sub-packages and class
additions to existing SDK packages. Figure 12 - Registry Packages provides an overview
of the primary SDK packages.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page 142

Package

com.verisign.epp.codec.re
gistry

com.verisign.epp.framewo
rk

com.verisign.epp.serverstu

b

com.verisign.epp.interface
s

Description

Registry Encoder/Decoder package. All of the detail
of encoding and decoding the Registry EPP
messages are in this package.

The EPPRegistryMapFactory must be added to the
EPP.MapFactories configuration parameter using
the full package and class name.

The

com.verisign.epp.codec.registry. EPPRegistryMapFa
ctory must be added to the EPP.MapFactories
configuration parameter for the proprietary Registry
Mapping.

The

com.verisign.epp.codec.registry.v02. EPPRegistryM
apFactory must be added to the EPP.MapFactories
configuration parameter for v04 of the Registry
Mapping.

Addition of Registry EPP Server Framework classes
used by the Stub Server.

The com.verisign.epp.framework for the proprietary
Registry Mapping.

The com.verisign.epp.framework.v02 for the
proprietary Registry Mapping.for v04 of the
Registry Mapping.

Addition of the RegistryHandler class used to
implement the EPP Registry Stub Server behavior.

The com.verisign.epp.serverstub.RegistryHandler
must be added to the EPP.ServerEventHandlers
configuration parameter for the proprietary Registry
Mapping.

The
com.verisign.epp.serverstub.registry.v02.RegistryHa
ndler must be added to the
EPP.ServerEventHandlers configuration parameter
for v04 of the Registry Mapping.

This package contains the Registry client interface
classes. These classes provide the primary interfaces
that map to the commands and objects of the
Registry EPP Mapping.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

e page 143

The com.verisign.epp.interfaces. EPPRegistry is
used for the proprietary Registry Mapping.
The

com.verisign.epp.interfaces.registry.v02. EPPRegistr
v is used for v04 of the Registry Mapping.

Figure 12 - Registry Packages

13.14.4.3 Registry XML Schema files

The Registry EPP Mapping is defined using XML schema files. These files are located in
the epp-verisign-bundle-{SBUILD VER}.jar in the schemas directory. You must un-jar
the jar file in order to explicitly view them. The following table gives a brief description
of these schema files:

File Name Locatio Description

n
registry- schemas Proprietary Registry XML Schema. This file must
1.0.xsd reside in the current directory of the client

application and the EPP Stub Server.

registry- schemas V04 of the IETF Registry XML Schema. This file
0.2.xsd must reside in the current directory of the client
application and the EPP Stub Server.

Figure 13 - Registry Schema Files

13.14.4.4 Registry Client Interfaces

The Registry portion of the Verisign Bundle EPP SDK contains client interface classes
for the Registry EPP Mapping. The interfaces provide mechanisms for querying
suggestions. The following sections describe the client interface classes, supporting
classes and their respective purposes.

13.14.4.4.1 Registry Interface

The Registry interface, EPPRegistry, is located in the com.verisign.epp.interfaces
package or the versioned com.verisign.epp.interfaces.registry.vXX package, where XX is
the version of the IETF draft XML schema namespace. This interface is used to query
zone information for the system.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 144

The EPPRegistry interface has the following relevant methods:

Return Value Parameters
EPPRegistry (EPPSession aNewSession)
This is the constructor method and it requires an EPP
session object to be passed that has been authenticated (e.g.

logged in).
EPPRegistryCheck sendCheck () This method checks on the availability /
RS2 existence of a zone.
This method is for future use.
EPPRegistryInfoR sendInfo () This method is used to get registry zone
esp information.
EPPRegistryCreat sendCreate () This method creates a new zone.
SEE)2 This method is for future use.
EPPResponse sendUpdate () This method updates a new zone.
This method is for future use.
EPPResponse sendDelete () This method deletes a zone.

This method is for future use.

1.1.1.1.1.29 EPPRegistry () Constructor

The EPPRegistry constructor requires that an authenticated EPPSession object be passed
upon creation. Once created, the EPPRegistry object can perform multiple functions
without reinitializing the EPPSession object. For example, you can use the same
initialized EPPRegistry object to call the sendlnfo() method multiple times.

1.1.1.1.1.291 Pre-Conditions
An authenticated session has been successfully established with an EPPSession.

1.1.1.1.1.29.2 Post-Conditions
The EPPRegistry instance is ready for the execution of one or more operations.

1.1.1.1.1.29.3 Exceptions
None

1.1.1.1.1.294 Sample Code

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 145

The following example shows the steps of initializing an EPPSession, then using the
EPPSession to initialize the EPPRegistry interface.

EPPSession session = new EPPSession();

// optional

session.setTransId (“ABC-12345-XYZ") ;
session.setVersion (“1.0”);
session.setLang (“Yen”) ;

// required
session.setClientID(“ClientXID”) ;
session.setPassword (“ClientXPass”) ;

try {
session.initSession () ;

}

catch (EPPCommandException ex) {
ex.printStackTrace() ;
System.exit (1) ;

}

EPPRegistry registry = new EPPRegistry(session);

1.1.1.1.1.30 sendInfo() method

The sendInfo() method sends the Registry EPP info command to the server. It has the
following signature:

public EPPRegistryInfoResp sendInfo() throws EPPCommandException

1.1.1.1.1.30.1 Pre-Conditions

For proprietary version (com.verisign.epp.interfaces package):

Either setAllTlds(boolean) is called with a value of true, addTld(String) is called, or
setSystem(boolean) is called with a value of true. Both setA/lTlds(true) and
addTld(String) cannot be called prior to calling sendInfo().

For v02 version (com.verisign.epp.interfaces package.v(2):

Use of setAllScope(EPPRegistryIlnfoCmd.Scope) with a valid scope, or addZone(String) /
addZone(EPPRegistryZoneName), or setinfoMode(EPPRegistrylnfoCmd.Scope) with a
value of EPPRegistrylnfoCmd.Scope.system.

1.1.1.1.1.30.2 Post-Conditions

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 146

On success, an EPPRegistryInfoResp is returned.

1.1.1.1.1.30.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned
from the server. The getResponse() method returns the associated EPPResponse. If the

exception is thrown before reading the server response, than getResponse() will return
null.

1.1.1.1.1.30.4 Sample Code

The following example shows the steps of performing a Registry info using the
EPPRegistry client interface and the sendInfo() method:

For proprietary version (com.verisign.epp.interfaces package):

EPPRegistryInfoResp response;

try {
// Get all TLD summary information?
if (all) {

registry.setAll1Tlds (true) ;
}
else { // Get information for “.tld”
registry.addTld (“.t1d”) ;
}
response = registry.sendInfo() ;
}
catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;
e.printStackTrace () ;

}

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 147

For v04 version (com.verisign.epp.interfaces package.v(2):

EPPRegistryInfoResp response;

try {
// Get all TLD summary information?
if (all) {

registry.setAllScope (EPPRegistryInfoCmd. Scope.both) ;
}
else if (system) {
registry.setInfoMode (EPPRegistryInfoCmd.Mode.system) ;
|
else { // Get information for “EXAMPLE”
registry.addZone ("EXAMPLE”) ;
}
response = registry.sendInfo();
}
catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;
e.printStackTrace () ;

}

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 148

13.14.5 Balance Mapping

This section is intended to provide users of the Extensible Provisioning Protocol (EPP) Software
Development Kit (SDK) with an overview of the Balance Mapping additions to the SDK. This
document includes the following Balance information:

1. Definition of the Balance SDK files (i.e. library, schema)

2. Description of the Balance interface classes, including the pre-conditions, the post-
conditions, the exceptions, the EPP status codes, and sample code of each of the action
methods.

The SDK provides detailed interface information in HTML Javadoc format. This document does
not duplicate the detailed interface information contained in the HTML Javadoc. Descriptions
are provided of the main Balance interface elements, the pre-conditions, the post-conditions, and
example code.

It is assumed that the reader has reviewed the associated EPP specifications and has a general
understanding of the EPP concepts. Much of the EPP details are encapsulated in the SDK, but
having a solid understanding of the EPP concepts will help in effectively using the SDK.

13.14.5.1 Balance Tests

The Verisign source distribution contains one test program for Balance EPP Mapping the
product uses. The tests are located in the nsfinance/java directory in com.verisign.epp.interfaces
package. The following table describes the test files:

Directory Description
EPPBalanceTst.java This is a sample program demonstrating the use of the
EPPBalance class.

13.14.5.2 Balance Packages

The Balance portion of the Verisign Bundle EPP SDK consists of sub-packages and class
additions to existing SDK packages. Figure 14 - Balance Packages provides an overview of the
primary SDK packages.

Package Description

com.verisign.epp.codec.balance Balance Encoder/Decoder package. All of the detail of
encoding and decoding the Balance EPP messages are in
this package.

The EPPBalanceFactory must be added to the
EPP.MapFactories configuration parameter using the full

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 149

package and class name.

com.verisign.epp.framework Addition of Balance EPP Server Framework classes used by
the Stub Server.

com.verisign.epp.serverstub Addition of the BalanceHandler class used to implement
the EPP Balance Stub Server behavior. This class must be
added to the EPP.ServerEventHandlers configuration
parameter using the full package and class names.

com.verisign.epp.interfaces This package contains the Balance client interface classes.
These classes provide the primary interfaces that map to the
commands and objects of the Balance EPP Mapping.

Figure 14 - Balance Packages

13.14.5.3 Balance XML Schema files

The Balance EPP Mapping is defined using XML schema files. These files are located in the
epp-verisign-bundle-{SBUILD VER].jar in the schemas directory. You must un-jar the jar file in
order to explicitly view them. The following table gives a brief description of these schema files:

File Name Location Description

balance-1.0.xsd schemas Balance XML Schema. This file must reside in the
current directory of the client application and the EPP
Stub Server.

Figure 15 - Balance Schema Files

13.14.5.4 Balance Client Interfaces

The Balance portion of the Verisign Bundle EPP SDK contains client interface classes for the
Balance EPP Mapping. The interfaces provide mechanisms for getting the account balance and
other financial information. The following sections describe the client interface classes,
supporting classes and their respective purposes.

13.14.5.4.1 Balance Interface

The Balance interface, EPPBalance, is located in the com.verisign.epp.interfaces package. This
interface is used to get the account balance and other financial information.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 150

The EPPBalance interface has the following relevant methods:

Return Value Parameters
EPPBalance (EPPSession aSession)

This is the constructor method and it requires an EPP session
object to be passed that has been authenticated (e.g. logged in).
EPPBalanceInfpResp sendInfo ()

This method is used to retrieve the account balance and other
financial information.

The method on the EPPBalance takes request data that will be sent to the server. The only
precondition that exists on the methods of this class is that a valid EPPSession is used to create
the instance. There is no other state associated with this class so all data passed as arguments is
sent to the server as is. The method will return a response from the Server and will throw an
exception if any error occurs. If the exception is associated with an error response from the
Server, then the response can be retrieved from the exception with a call to getResponse(). The
following sections describe and provide sample code for the method and the EPPBalance
constructor.

1.1.1.1.1.31 EPPBalance () Constructor

The EPPBalance constructor requires that an authenticated EPPSession object be passed upon
creation. Once created, the EPPBalance object can perform multiple functions without
reinitializing the EPPSession object. For example, you can use the same initialized EPPBalance
object to get the balance information with the sendInfo() command.

1.1.1.1.1.311 Pre-Conditions
An authenticated session has been successfully established with an EPPSession.

1.1.1.1.1.31.2 Post-Conditions
The EPPBalance instance is ready for the execution of one or more operations.

1.1.1.1.1.31.3 Exceptions
None

1.1.1.1.1.314 Sample Code

The following example shows the steps of initializing an EPPSession, then using the EPPSession
to initialize the EPPBalance interface.

EPPSession session = new EPPSession();

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 151

// optional

session.setTransId (Y"ABC-12345-XYZ") ;
session.setVersion (“1.0”);
session.setLang (“Yen”) ;

// required
session.setClientID(“ClientXID”) ;
session.setPassword (“ClientXPass”) ;

try {
session.initSession () ;

}

catch (EPPCommandException ex) {
ex.printStackTrace() ;
System.exit (1) ;

}

EPPBalance balance = new EPPBalance (session) ;

1.1.1.1.1.32 sendInfo() method

The sendlnfo() method sends the Balance EPP info command to the Server. It has the following

signature:

public EPPBalanceInfoResp sendInfo ()

1.1.1.1.1.32.1 Pre-Conditions

throws EPPCommandException

1. The client transaction id should be set by calling setTransld(String aTransld) method.

1.1.1.1.1.32.2 Post-Conditions

On success, an EPPBalancelnfoResp is returned.

1.1.1.1.1.32.3 Exceptions

An EPPCommandException will be returned that contains the EPPResponse returned from the
Server. The getResponse() method returns the associated EPPResponse. If the exception is

thrown before reading the Server response, than getResponse() will return null.

1.1.1.1.1.324 Sample Code

The following example shows the steps of performing a Balance info using the EPPBalance

client interface and the sendinfo() method:

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

e page 152

EPPBalanceInfoResp response;

try {
EPPBalance balance = new EPPBalance (session) ;
balance.setTransId ("ABC-12345") ;
response = balance.sendInfo();

System.out.println("Credit Limit: " +
response.getCreditLimit ());

System.out.println("Balance: " +
response.getBalance ());
System.out.println("Available Credit: “ +

response.getAvailableCredit ());

System.out.println("Credit Threshold (type, value): " +
response.getCreditThreshold () .getType () + “,” +
response.getCreditThreshold () .getValue()) ;

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 153

13.14.6 EmailFwd Mapping
To be filled in. Please refer to the JavaDoc for detail on the EmailFwd Mapping support.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 154

13.14.7 DefReg Mapping
To be filled in. Please refer to the JavaDoc for detail on the DefReg Mapping support.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 155

13.14.8 NameWatch Mapping
To be filled in. Please refer to the JavaDoc for detail on the NameWatch Mapping support.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page 156

13.14.9 IDN Table Mapping

This section is intended to provide users of the Extensible Provisioning Protocol (EPP) Software
Development Kit (SDK) with an overview of the Internationalized Domain Name (IDN) Table
Mapping additions to the SDK. This document includes the following IDN Table information:

3. Definition of the IDN Table SDK files (i.e. library, schema)

4. Description of the IDN Table interface classes, including the pre-conditions, the post-
conditions, the exceptions, the EPP status codes, and sample code of each of the action
methods.

The SDK provides detailed interface information in HTML Javadoc format. This document does
not duplicate the detailed interface information contained in the HTML Javadoc. Descriptions
are provided of the main IDN Table interface elements, the pre-conditions, the post-conditions,
and example code.

It is assumed that the reader has reviewed the associated EPP specifications and has a general
understanding of the EPP concepts. Much of the EPP details are encapsulated in the SDK, but
having a solid understanding of the EPP concepts will help in effectively using the SDK.

13.14.9.1 IDN Table Tests

The Verisign source distribution contains one test program for the IDN Table EPP Mapping. The
tests are located in the idntable/java directory in com.verisign.epp.interfaces package. The
following table describes the test files:

Directory Description
EPPIdnTableTst.java This is a sample program demonstrating the use of the
EPPIdnTable class.

13.14.9.2 IDN Table Packages

The IDN Table portion of the Verisign Bundle EPP SDK consists of sub-packages and class
additions to existing SDK packages. Figure 14 - Balance Packages provides an overview of the
primary SDK packages.

Package Description

com.verisign.epp.codec.idntable IDN Table Encoder/Decoder package. All of the detail of
encoding and decoding the IDN Table EPP messages are in
this package.

The EPPldnTableFactory must be added to the
EPP.MapFactories configuration parameter using the full
package and class name.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 157

com.verisign.epp.framework Addition of IDN Table EPP Server Framework classes used
by the Stub Server.

com.verisign.epp.serverstub Addition of the IdnTableHandler class used to implement
the EPP IDN Table Stub Server behavior. This class must
be added to the EPP.ServerEventHandlers configuration
parameter using the full package and class names.

com.verisign.epp.interfaces This package contains the IDN Table client interface
classes. These classes provide the primary interfaces that
map to the commands and objects of the IDN Table EPP
Mapping.

Figure 16 — IDN Table Packages

13.14.9.3 IDN Table XML Schema files

The IDN Table EPP Mapping is defined using XML schema files. These files are located in the
epp-verisign-bundle-{SBUILD VER].jar in the schemas directory. You must un-jar the jar file in
order to explicitly view them. The following table gives a brief description of these schema files:

File Name Location Description

1dnTable-1.0.xsd schemas IDN Table XML Schema. This file must reside in the
current directory of the client application and the EPP
Stub Server.

Figure 17 — IDN Table Schema Files

13.14.9.4 IDN Table Client Interfaces

The IDN Table portion of the Verisign Bundle EPP SDK contains client interface classes for the
IDN Table EPP Mapping. The interfaces provide mechanisms for getting the IDN Table
information. The following sections describe the client interface classes, supporting classes and
their respective purposes.

13.14.9.4.1 IDN Table Interface

The IDN Table interface, EPPldnTable, is located in the com.verisign.epp.interfaces package.
This interface is used to get the IDN Table information utilizing the forms defined in the IDN
Table EPP Mapping.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 158

The EPPldnTable interface has the following relevant methods:

Return Value Parameters
EPPIdnTable (EPPSession aSession)

This is the constructor method and it requires an EPP session
object to be passed that has been authenticated (e.g. logged in).
EPPIdnTableCheckResp sendDomainCheck ()

Sends an IDN Table Check Command in Domain Check Form.

Requires at least one domain name set with the addDomain(String)
method.

Optionally the client transaction identifier set with the
setTransld(String) method.
EPPIdnTableCheckResp sendTableCheck()

Sends an IDN Table Check Command in Table Check Form.

Requires at least one table identifier set with the addTable(String)
method.

Optionally the client transaction identifier set with the
setTransld(String) method.
EPPIdnTableResp sendDomainInfo ()

Sends an IDN Table Info Command in Domain Info Form.

Requires one domain name set with the addDomain(String)
method.

Optionally the client transaction identifier set with the
setTransld(String) method.
EPPIdnTableResp sendTableInfo ()

Sends an IDN Table Info Command in Table Info Form.
Requires one table identifier set with the addTable(String) method.
Optionally the client transaction identifier set with the

setTransld(String) method.
EPPIdnTableResp sendListInfo ()

Sends an IDN Table Info Command in List Info Form.

Optionally the client transaction identifier set with the

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 159

setTransld(String) method.

The methods on the EPPIldnTable takes request data that will be sent to the server. The methods
will return a response from the Server and will throw an exception if any error occurs. If the
exception is associated with an error response from the Server, then the response can be retrieved
from the exception with a call to getResponse(). The following sections describe and provide
sample code for the method and the EPPIdnTable constructor.

1.1.1.1.1.33 EPPIdnTable () Constructor

The EPPldnTable constructor requires that an authenticated EPPSession object be passed upon
creation. Once created, the EPPIdnTable object can perform multiple functions without
reinitializing the EPPSession object. For example, you can use the same initialized EPPIldnTable
object to get the IDN Table information with any of the send() methods.

1.1.1.1.1.331 Pre-Conditions
An authenticated session has been successfully established with an EPPSession.

1.1.1.1.1.33.2 Post-Conditions
The EPPIdnTable instance is ready for the execution of one or more operations.

1.1.1.1.1.33.3 Exceptions
None

1.1.1.1.1.33.4 Sample Code

The following example shows the steps of initializing an EPPSession, then using the EPPSession
to initialize the EPPIdnTable interface.

EPPSession session = new EPPSession();

// optional

session.setTransId (Y"ABC-12345-XYZ") ;
session.setVersion (“1.0”);
session.setLang (“Yen”) ;

// required
session.setClientID(“ClientXID”) ;
session.setPassword (“ClientXPass”) ;

try {
session.initSession () ;
}

catch (EPPCommandException ex) {

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 160

ex.printStackTrace() ;
System.exit (1) ;
}

EPPIdnTable idnTable = new EPPIdnTable (session) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 161

13.14.10 China Name Verification Mapping

This section is intended to provide users of the Extensible Provisioning Protocol (EPP) Software
Development Kit (SDK) with an overview of the China Name Verification Mapping additions to
the SDK. This document includes the following China Name Verification information:

1. Definition of the China Name Verification SDK files (i.e. library, schema)

2. Description of the China Name Verification interface classes, including the pre-
conditions, the post-conditions, the exceptions, the EPP status codes, and sample code of
each of the action methods.

The SDK provides detailed interface information in HTML Javadoc format. This document does
not duplicate the detailed interface information contained in the HTML Javadoc. Descriptions
are provided of the main China Name Verification interface elements, the pre-conditions, the
post-conditions, and example code.

It is assumed that the reader has reviewed the associated EPP specifications and has a general
understanding of the EPP concepts. Much of the EPP details are encapsulated in the SDK, but
having a solid understanding of the EPP concepts will help in effectively using the SDK.

13.14.10.1 China Name Verification Tests

The Verisign source distribution contains one test program for the China Name Verification EPP
Mapping. The tests are located in the vsp/java directory in com.verisign.epp.interfaces package.
The following table describes the test files:

Directory Description

EPPNameVerificationTst.java This is a sample program demonstrating the use of the
EPPNameVerification class.

13.14.10.2 China Name Verification Packages

The China Name Verification portion of the Verisign Bundle EPP SDK consists of sub-packages
and class additions to existing SDK packages. Figure 14 - Balance Packages provides an
overview of the primary SDK packages.

Package Description

com.verisign.epp.codec.nv China Name Verification Encoder/Decoder package. All of
the detail of encoding and decoding the China Name
Verification EPP messages are in this package.

The EPPNameVerificationMapFactory must be added to
the EPP.MapFactories configuration parameter using the

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 162

full package and class name.

com.verisign.epp.framework Addition of China Name Verification EPP Server
Framework classes used by the Stub Server.

com.verisign.epp.serverstub Addition of the NameVerificationHandler class used to
implement the EPP China Name Verification Stub Server
behavior. This class must be added to the
EPP.ServerEventHandlers configuration parameter using
the full package and class names.

com.verisign.epp.interfaces This package contains the China Name Verification client
interface classes. These classes provide the primary
interfaces that map to the commands and objects of the
China Name Verification EPP Mapping.

Figure 18 — China Name Verification Packages

13.14.10.3 China Name Verification XML Schema files

The China Name Verification EPP Mapping is defined using XML schema files. These files are
located in the epp-verisign-bundle-{SBUILD VER}.jar in the schemas directory. You must un-
jar the jar file in order to explicitly view them. The following table gives a brief description of
these schema files:

File Name Location Description

nv-1.0.xsd schemas China Name Verification XML Schema. This file must
reside in the current directory of the client application and
the EPP Stub Server.

Figure 19 — China Name Verification Schema Files

13.14.10.4 China Name Verification Client Interfaces

The China Name Verification portion of the Verisign Bundle EPP SDK contains client interface
classes for the China Name Verification EPP Mapping. The interfaces provide mechanisms for
sending China Name Verification transform and query commands. The following sections
describe the client interface classes, supporting classes and their respective purposes.

13.14.10.4.1 China Name Verification Interface

The China Name Verification interface, EPPNameVerification, is located in the
com.verisign.epp.interfaces package. This interface is used to get the China Name Verification
information utilizing the forms defined in the China Name Verification EPP Mapping.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 163

The EPPNameVerification interface has the following relevant methods:

Return Value

EPPNameVerificationChe
ckResp

EPPNameVerificationInf
oResp

EPPNameVerificationCre
ateResp

EPPResponse

Parameters
EPPNameVerification (EPPSession aSession)

This is the constructor method and it requires an EPP session
object to be passed that has been authenticated (e.g. logged in).
sendCheck ()

Sends a Name Verification Check Command to the server.

Requires at least one domain label set with the addLabel(String)
method.

Optionally the client transaction identifier set with the
setTransld(String) method.
sendInfo ()

Sends a Name Verification Info Command to the server.

Requires the verification code with the setCode(String) method and
the info type with the
setType(EPPNameVerificationlnfoCmd. Type) method .

Optionally the client transaction identifier set with the
setTransld(String) method or set the authorization information with
the setAuthinfo(String) method.

sendCreate ()

Sends the Name Verification Create Command for either a Domain
Name Verification (DNV) or Real Name Verification (RNV)
object.

Requires either the Domain Name Verification (DNV) information
to be set with setDnv(EPPDomainNameVerification) or the Real
Name Verification (RNV) information to be set with
setRnv(EPPRealNameVerification), along with the authorization
information with setAuthlnfo(String).

Optionally the client transaction identifier set with the

setTransld(String) method.
sendUpdate ()

Sends the Name Verification Update Command to update the
authorization information for a Name Verification object.

Requires the verification code with the setCode(String) method and

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 164

the new authorization information with the setAuthinfo(String)
method.

Optionally the client transaction identifier set with the
setTransld(String) method.

The methods on the EPPNameVerification takes request data that will be sent to the server. The
methods will return a response from the Server and will throw an exception if any error occurs.
If the exception is associated with an error response from the Server, then the response can be
retrieved from the exception with a call to getResponse(). The following sections describe and
provide sample code for the method and the EPPNameVerification constructor.

1.1.1.1.1.34 EPPNameVerification () Constructor

The EPPNameVerification constructor requires that an authenticated EPPSession object be
passed upon creation. Once created, the EPPNameVerification object can perform multiple
functions without reinitializing the EPPSession object. For example, you can use the same
initialized EPPNameVerification object to send any of the China Name Verification commands
with the send() methods.

1.1.1.1.1.341 Pre-Conditions
An authenticated session has been successfully established with an EPPSession.

1.1.1.1.1.34.2 Post-Conditions
The EPPNameVerification instance is ready for the execution of one or more operations.

1.1.1.1.1.34.3 Exceptions
None

1.1.1.1.1.344 Sample Code

The following example shows the steps of initializing an EPPSession, then using the EPPSession
to initialize the EPPNameVerification interface.

EPPSession session = new EPPSession();

// optional

session.setTransId (Y"ABC-12345-XYZ") ;
session.setVersion (“1.0”);
session.setLang (“Yen”) ;

// required
session.setClientID(“ClientXID”) ;
session.setPassword (“ClientXPass”) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 165

try {
session.initSession () ;

}

catch (EPPCommandException ex) {
ex.printStackTrace() ;
System.exit (1) ;

}

EPPNameVerification nameVerification = new EPPNameVerification (session) ;

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide ® page 166

13.14.11 Organization Mapping

This section is intended to provide users of the Extensible Provisioning Protocol (EPP) Software
Development Kit (SDK) with an overview of the Organization Mapping additions to the SDK.
This document includes the following Organization information:

3. Definition of the Organization SDK files (i.e. library, schema)

4. Description of the Organization interface classes, including the pre-conditions, the post-
conditions, the exceptions, the EPP status codes, and sample code of each of the action
methods.

The SDK provides detailed interface information in HTML Javadoc format. This document does
not duplicate the detailed interface information contained in the HTML Javadoc. Descriptions
are provided of the main Organization interface elements, the pre-conditions, the post-conditions,
and example code.

It is assumed that the reader has reviewed the associated EPP specifications and has a general
understanding of the EPP concepts. Much of the EPP details are encapsulated in the SDK, but
having a solid understanding of the EPP concepts will help in effectively using the SDK.

13.14.11.1 Organization Tests

The Verisign source distribution contains one test program for the Organization EPP Mapping.
The tests are located in the vsp/java directory in com.verisign.epp.interfaces package. The
following table describes the test files:

Directory Description
EPPOrgTst.java This is a sample program demonstrating the use of the EPPOrg
class.

13.14.11.2 Organization Packages

The Organization portion of the Verisign Bundle EPP SDK consists of sub-packages and class
additions to existing SDK packages. Figure 14 - Balance Packages provides an overview of the
primary SDK packages.

Package Description

com.verisign.epp.codec.org Organization Encoder/Decoder package. All of the detail of
encoding and decoding the Organization EPP messages are
in this package.

The EPPOrgMapFactory must be added to the
EPP.MapFactories configuration parameter using the full

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 167

package and class name.

com.verisign.epp.framework Addition of Organization EPP Server Framework classes
used by the Stub Server.

com.verisign.epp.serverstub Addition of the OrgHandler class used to implement the
EPP Organization Stub Server behavior. This class must be
added to the EPP.ServerEventHandlers configuration
parameter using the full package and class names.

com.verisign.epp.interfaces This package contains the Organization client interface
classes. These classes provide the primary interfaces that
map to the commands and objects of the Organization EPP
Mapping.

Figure 20 — Organization Packages

13.14.11.3 Organization XML Schema files

The Organization EPP Mapping is defined using XML schema files. These files are located in
the epp-verisign-bundle-{SBUILD VER).jar in the schemas directory. You must un-jar the jar
file in order to explicitly view them. The following table gives a brief description of these
schema files:

File Name Location Description

org-1.0.xsd schemas Organization Mapping XML Schema. This file must
reside in the current directory of the client application and
the EPP Stub Server.

Figure 21 — Organization Schema Files

13.14.11.4 Organization Client Interfaces

The Organization portion of the Verisign Bundle EPP SDK contains client interface classes for
the Organization EPP Mapping. The interface provides a mechanism for sending Organization
transform and query commands. The following sections describe the client interface classes,
supporting classes and their respective purposes.

13.14.11.4.1 Organization Interface

The Organization interface, EPPOrg, is located in the com.verisign.epp.interfaces package. This
interface is used to get the send Organization transform and query commands defined in the
Organization EPP Mapping.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 168

The EPPOrg interface has the following relevant methods:

Return Value

EPPOrgCheckResp

EPPOrganizationInfoRes
P

EPPOrganizationCreateR
esp

EPPResponse

Parameters
EPPOrg (EPPSession aSession)

This is the constructor method and it requires an EPP session
object to be passed that has been authenticated (e.g. logged in).
sendCheck ()

Sends a Organization Check Command to the server.

Requires at least one organization identifier set with the
addOrgld(String) method.

Optionally the client transaction identifier set with the
setTransld(String) method.
sendInfo ()

Sends a Organization Info Command to the server.

Requires the organization identifier with the addOrgld(String)
method.

Optionally the client transaction identifier set with the
setTransld(String) method.

sendCreate ()

Sends the Organization Create Command for a organization object.

Requires the organization identifier to be set with
addOrgld(String) and at least one role be set with
addRole(EPPOrgRole).

Optionally the client transaction identifier set with the
setTransld(String) method along with the other reseller attributes.
sendDelete ()

Sends the Organization Delete Command to delete the organization
object.

Requires the organization identifier to be set with
addOrgld(String).

Optionally the client transaction identifier set with the
setTransld(String) method along with the other reseller attributes.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide e page 169

EPPResponse sendUpdate ()

Sends the Organization Update Command to update the
organization object.

Requires the organization identifier to be set with
addOrgld(String).

Optionally the client transaction identifier set with the
setTransld(String) method along with the other reseller attributes.

The methods on the EPPOrg takes request data that will be sent to the server. The methods will
return a response from the Server and will throw an exception if any error occurs. If the
exception is associated with an error response from the Server, then the response can be retrieved
from the exception with a call to getResponse(). The following sections describe and provide
sample code for the method and the EPPOrg constructor.

1.1.1.1.1.35 EPPOrg() Constructor

The EPPOrg constructor requires that an authenticated EPPSession object be passed upon
creation. Once created, the EPPOrg object can perform multiple functions without reinitializing
the EPPSession object. For example, you can use the same initialized EPPOrg object to send any
of the Organization commands with the send() methods.

1.1.1.1.1.351 Pre-Conditions
An authenticated session has been successfully established with an EPPSession.

1.1.1.1.1.35.2 Post-Conditions
The EPPOrganization instance is ready for the execution of one or more operations.

1.1.1.1.1.35.3 Exceptions
None

1.1.1.1.1.354 Sample Code

The following example shows the steps of initializing an EPPSession, then using the EPPSession
to initialize the EPPOrganization interface.

EPPSession session = new EPPSession();

// optional

session.setTransId (Y"ABC-12345-XYZ") ;
session.setVersion (“1.0”);
session.setLang (“Yen”) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 170

// required
session.setClientID(“ClientXID”) ;

session.setPassword (“ClientXPass”) ;

try {
session.initSession () ;

}

catch (EPPCommandException ex) {
ex.printStackTrace() ;
System.exit (1) ;

}

EPPOrg org = new EPPOrg(session);

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

e page 171

13.14.12 Maintenance Mapping

The Maintenance Mapping in “Registry Maintenance Notifications for the Extensible
Provisioning Protocol (EPP)” describes a mapping for maintenance notifiications.

13.14.12.1 Maintenance Mapping Packages

The Maintenance Mapping consists of sub-packages of the SDK packages and class additions to
existing SDK packages. The following table provides an overview of the Validate Extension
packages.

Package Description

com.verisign.epp.codec.maintena Maintenance Mapping EPP Encoder/Decoder package. All

nce of the detail of encoding and decoding the Maintenance
Mapping EPP messages are encapsulated in this package.
The

com.verisign.epp.codec.maintenance.vl _0.EPPValidateMap
Factory must be added to the EPP.MapFactories
configuration parameter to support REC 9167 .

com.verisign.epp.interfaces Includes com.verisign.epp.interfaces.
maintenance.vl _(0.EPPMaintenanceTst test class for testing
the Maintenance Mapping against the Stub Server for REC
9167.

com.verisign.epp.serverstub For the Maintenance Mapping to be supported by the Stub
Server, the
com.verisign.epp.serverstub.maintenance.vl (.Maintenance
Handler or later must be added to the
EPP.ServerEventHandlers configuration parameter.

Also, the

com.verisign.epp.serverstub.maintenance.vl (.Maintenance
PollHandler must be added to the EPP.PollHandlers
configuration parameter.

13.14.12.2 Maintenance Mapping XML Schema Files

The Maintenance Mapping is defined using an XML schema file and is dependent on a set of
XML schema files. These files are located in the epp-verisign-bundle-{SBUILD VER}.jar in the
schemas directory. You must un-jar the jar file in order to explicitly view them.

File Name Location Description
mMaintenance- schemas RFC 9167 Maintenance Mapping XML Schema
1.0.xsd

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 172

13.15 Extensions

13.15.1 NamestoreExt Extension

The NamestoreExt is used for command routing to a logical service or registry using a
sub-product property that is referred to as the SubProductID. Both Namestore (CTLD)
and the COMNET require the use of the NameStoreExt to uniquely identify the target
registry or service. For example, when a host is created, the NamestoreExt element will
specify the particular registry at which the host is created. Currently, the convention used
for the SubProductID is to use the A-Label TLD, as in “CC” for the .CC TLD or “COM”
for the .COM TLD.

13.15.1.1 EPPNamestoreExtNamestoreExt

The EPPNamestoreExtNamestoreExt class is used with the addExtension() method for
specifying the subProduct. The constructor or the setSubProductID(java.lang.String)
should be used for setting the SubProductID value.

Please refer to the following sections for sample code demonstrating the use of the
EPPNamestoreExtNamestoreEXxt class.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 173

13.15.2 Whois Info Extension

The Whois Info Extension defined in “Extensible Provisioning Protocol Extension
Mapping: Whois Info” is used to get additional domain information that is provided in
the Whois Server including the following attributes:

1. Registrar Name — Full name of the sponsoring Registrar
2. Whois Server — Whois Server of the sponsoring Registrar
3. Referral URL — Referral URL of the sponsoring Registrar
4. 1IRIS Server — IRIS Server of the sponsoring Registrar

To specify that the additional information is desired, either an
com.verisign.epp.codec.whois. EPPWhoisInf instance needs to added to the
com.verisign.epp.interfaces. EPPDomain via the addExtension(EPPCodecComponent)
method or via the com.verisign.epp.interfaces. NSDomain.setWhoisInf(boolean) method.
If the flag is set to true, than the com.verisign.epp.codec.whois. EPPWhoisInfData
instance can be retrieved from the returned

com.verisign.epp.codec.domain. EPPDomainInfoResp via the getExtension(Class)
method.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 174

13.15.3 SecDNS Extension

The SecDNS Extension is used for provisioning and management of DNS security
extensions in a shared central repository. This extension defines additional elements for
EPP <create>, <update> commands and also for the EPP <info> response. There are two
versions of the SecDNS Extension supported that include:

1. secDNS-1.0 — This is the term that refers to “RFC 4310 — EPP DNS Security
Extensions Mapping”. The classes contained in the
com.verisign.epp.codec.secdnsext package were moved to the

com.verisign.epp.codec.secdnsext.v1(package to support more than one version
of the SecDNS Extension.

2. secDNS-1.1 — This is the term that refers to “RFC 5910 — EPP DNS Security
Extensions Mapping” that deprecates “RFC 4310 — EPP DNS Security Extensions
Mapping”. It is recommended that secDNS-1.1 be used. The secDNS-1.1 classes
are contained in the com.verisign.epp.codec.secdnsext.vil package. There are
some fundamental changes included in secDNS-1.1 that should be reviewed if the
client is migrating from secDNS-1.0.

There are two approaches to setting the SecDNS Extension with a domain create or
update command. The first approach sets the
com.verisign.epp.codec.secdnsext.vi(0.EPPSecDNSExtCreate or
com.verisign.epp.codec.secdnsext.vi(0.EPPSecDNSExtUpdate instances for secDNS-1.0
or sets the com.verisign.epp.codec.secdnsext.vl1.EPPSecDNSExtCreate or
com.verisign.epp.codec.secdnsext.vi . EPPSecDNSExtUpdate instances for secDNS-1.1
with the com.verisign.epp.interfaces. EPPDomain.addExtension(EPPCodecComponent)
method. The second approach is to use the SecDNS Extension convenience methods
with the com.verisign.epp.interfaces. NSDomain interface described below.

Some of the com.verisign.epp.namestore.interfaces. NSDomain methods support both
secDNS1.0 and secDNS-1.1 by using reflection of the first element contained in the
passed in List parameter. The List parameter contains
com.verisign.epp.codec.secdnsext.vl(0.EPPSecDNSExtDsData instances for secDNS-1.0
and com.verisign.epp.codec.secdnsext.vl 1.EPPSecDNSExtDsData instances for secDNS-
1.1. The exception to this is the setSecDNSUpdateForRem(List, Boolean) method where
the List parameter contains /nteger instances for secDNS-1.0 and
com.verisign.epp.codec.secdnsext.vl 1. EPPSecDNSExtDsData instances for secDNS-1.1.
The methods include the following:

1. setSecDNSCreate(List aDsData) — Set the DS to include with the sendCreate().

2. setSecDNSUpdateForAdd(List aAddDsData, boolean aUrgent) — Set the DS to
add along with the urgent flag value. For secDNS-1.1 it is recommended to use

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 175

the setSecDNSUpdate(List aAddDsData, List aRemDsData) method instead. The
setSecDNSUpdateForAdd(List aAddDsData, boolean aUrgent) method cannot be
used in combination with any other setSecDNSUpdate methods.

3. setSecDNSUpdateForRem(List aRemDsData, boolean aUrgent) — Set the DS to
remove along with the urgent flag value. For secDNS-1.1 it is recommended to
use the setSecDNSUpdate(List aAddDsData, List aRemDsData) method instead.
The setSecDNSUpdateForRem(List aRemDsData, boolean aUrgent) method
cannot be used in combination with any other setSecDNSUpdate methods.

One method that only supports secDNS-1.1 is the following:

1. setSecDNSUpdate(List aAddDsData, List aRemDsData) —The method can be
used to add, remove, remove all, and replace all DS. The constant
NSDomain.REM_ALL DS can be used for the aRemDsData parameter to remove
all DS and to replace all DS by also including a non-null, non-empty aAddDsData
parameter. setSecDNSUpdate(List aAddDsData, List aRemDsData) method
cannot be used in combination with any other setSecDNSUpdate methods. The
aUrgent parameter is not included with this method since the Verisign servers do
not support setting the urgent flag to true.

One method that only supports secDNS-1.0 is the following:

1. setSecDNSUpdateForChg(List aChgDsData, boolean aUrgent) — This method
replaces all of the DS according to secDNS-1.0. There is a different approach
taken for secDNS-1.1 to replace all of the DS, so the use of the <secDNS:chg>
with a list of DS is specific to secDNS-1.0.

13.15.3.1 Sample Code
The following is a sample of setting DS data on a domain create using secDNS-1.0.

NSDomain theDomain = new NSDomain (session);
theDomain.addDomainName (Yexample.com”) ;
theDomain.setSubProductID (NSSubProduct.COM) ;
theDomain.setAuthString ("ClientX") ;

// Add DS

List dsDatalist = new ArrayList();

dsDatalist.add (new

com.verisign.epp.codec.secdnsext.v10.EPPSecDNSExtDsData (12345,
EPPSecDNSAlgorithm.DSA,
EPPSecDNSExtDsData.SHAl DIGEST TYPE,
"49FD46E6C4B45C55D4AC")) ;

theDomain.setSecDNSCreate (dsDatalist) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page 176

EPPDomainCreateResp theResponse = theDomain.sendCreate() ;

The following is a sample of setting DS data on a domain create using secDNS-1.1.

NSDomain theDomain = new NSDomain (session);
theDomain.addDomainName (“example.com”) ;
theDomain.setSubProductID (NSSubProduct.COM) ;
theDomain.setAuthString ("ClientX") ;

// Add DS

List dsDatalist = new ArrayList();

dsDatalist.add (new

com.verisign.epp.codec.secdnsext.v1ll.EPPSecDNSExtDsData (12345,
EPPSecDNSAlgorithm.DSA,
EPPSecDNSExtDsData.SHAl DIGEST TYPE,
"49FD46E6C4B45C55D4AC")) ;

theDomain.setSecDNSCreate (dsDatalist) ;

EPPDomainCreateResp theResponse = theDomain.sendCreate() ;

The following is a sample of adding DS data on a domain update using secDNS-1.0.

NSDomain theDomain = new NSDomain (session);
theDomain.addDomainName (Yexample.com”) ;
theDomain.setSubProductID (NSSubProduct.COM) ;

// Add DS

List dsDatalist = new ArrayList();

dsDatalist.add (new

com.verisign.epp.codec.secdnsext.v10.EPPSecDNSExtDsData (12345,
EPPSecDNSAlgorithm.DSA,
EPPSecDNSExtDsData.SHAl DIGEST TYPE,
"49FD46E6C4B45C55D4AC")) ;

theDomain.setSecDNSUpdateForAdd (dsDatalist) ;

EPPDomainCreateResp theResponse = theDomain.sendUpdate () ;

The following is a sample of adding and removing DS data on a domain update using
secDNS-1.1.

NSDomain theDomain = new NSDomain (session);
theDomain.addDomainName (“example.com”) ;
theDomain.setSubProductID (NSSubProduct.COM) ;

// Add DS

List addDsDatalist = new ArrayList();

addDsDatalList.add (new

com.verisign.epp.codec.secdnsext.v1ll.EPPSecDNSExtDsData (12345,
EPPSecDNSAlgorithm.DSA,
EPPSecDNSExtDsData.SHAl DIGEST TYPE,
"49FD46E6C4B45C55D4AC")) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 177

List remDsDatalist = new ArrayList();

remDsDatalList.add (new

com.verisign.epp.codec.secdnsext.v1ll.EPPSecDNSExtDsData (12345,
EPPSecDNSAlgorithm.DSA,
EPPSecDNSExtDSData.SHAl_DIGEST_TYPE,
"38EC35D5B3A34B44C39B ")) ;

theDomain.setSecDNSUpdate (addDsDatalist, remDsDatalist);

EPPDomainCreateResp theResponse = theDomain.sendUpdate () ;

The following is a sample of replacing all DS data by removing all and then adding a list
of new DS using secDNS-1.1.

NSDomain theDomain = new NSDomain (session);
theDomain.addDomainName (“example.com”) ;
theDomain.setSubProductID (NSSubProduct.COM) ;

// Add DS

List addDsDatalist = new ArrayList();

addDsDatalist.add (new

com.verisign.epp.codec.secdnsext.v1ll.EPPSecDNSExtDsData (12345,
EPPSecDNSAlgorithm.DSA,
EPPSecDNSExtDsData.SHAl DIGEST TYPE,
"49FD46E6C4B45C55D4AC")) ;

theDomain.setSecDNSUpdate (addDsDatalList, NSDomain.REM ALL DS);

EPPDomainCreateResp theResponse = theDomain.sendUpdate () ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 178

13.15.4 COA Extension

The COA Extension is used for provisioning and management of Client Object Attribute
extensions in a shared central repository. This extension defines additional elements for
EPP <create>, <update> commands and also for the EPP <info> response.

There are two approaches to setting the COA Extension with a domain create or update
command. The first approach sets the com.verisign.epp.codec.coaext. EPPCoaExtCreate
or com.verisign.epp.codec.coaext. EPPCoaFExtUpdate instances with the
com.verisign.epp.interfaces. EPPDomain.addExtension(EPPCodecComponent) method.
The second approach is to use the COA Extension convenience methods with the
com.verisign.epp.interfaces. NSDomain interface described here.

1. setCoaCreate(List aAttrs) — Set the COAs to include with the sendCreate().

Code sample:

NSDomain theDomain = new NSDomain (session) ;
theDomain.addDomainName (“example.com”) ;
theDomain.setSubProductID (NSSubProduct.COM) ;
theDomain.setAuthString ("ClientX") ;

// Client Object Attributes to be added

EPPCoaExtAttr attr = new EPPCoaExtAttr ("KEY1", "valuel"
) ;

List attrlList = new ArrayList();

attrList.add(attr);

theDomain.setCoaCreate (attrList) ;

EPPDomainCreateResp theResponse = theDomain.sendCreate() ;

2. setCoaUpdateForPut(List aAttrs) — Set the list of key / value pairs specifying the
COAs to add or update.

Code sample:

NSDomain theDomain = new NSDomain (session) ;
theDomain.addDomainName (“example.com”) ;
theDomain.setSubProductID (NSSubProduct.COM) ;
theDomain.setAuthString ("ClientX") ;

// Client Object Attributes to be added

EPPCoaExtAttr attr = new EPPCoaExtAttr ("KEY1", "valuel"
)

List attrlList = new ArrayList();

attrlist.add(attr);
theDomain.setCoaUpdateForPut (attrList) ;

EPPDomainCreateResp theResponse = theDomain.sendUpdate () ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 179

3. setCoaUpdateForRem(List aKeys) — Set the list of keys identifying which existing
COAs to remove.

Code sample:

NSDomain theDomain = new NSDomain (session) ;
theDomain.addDomainName (“example.com”) ;
theDomain.setSubProductID (NSSubProduct.COM) ;
theDomain.setAuthString ("ClientX") ;

// Client Object Attributes to be removed
EPPCoaExtKey key = new EPPCoaExtKey ("KEY1");
List attrlList = new ArrayList();
attrlList.add (key);
theDomain.setCoaUpdateForRem (attrList) ;

EPPDomainCreateResp theResponse = theDomain.sendUpdate () ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 180

13.15.5 Launch Extension

The Launch Extension defined in “Launch Phase Mapping for the Extensible Provisioning
Protocol (EPP)” is used during the launch phases of new TLD’s. During the “sunrise” launch
phase, trademark information is passed using the definitions in the “Mark and Signed Mark
Objects Mapping”. The Launch Extension includes extensions to the Domain Check Command,
Domain Info Command, Domain Create Command, Domain Update Command, and Domain
Delete Command. The majority of the SDK support for the Launch Extension is handled by
using the Launch CODEC classes, in the com.verisign.epp.codec.launch package, with the
com.verisign.epp.interfaces. EPPDomain.addExtension(EPPCodecComponent) method or the
com.verisign.epp.namestore.interfaces. NSDomain.addExtension(EPPCodecComponent) method.
The com.verisign.epp.interfaces. EPPLaunch interfaces class was created to simplify sending the
Launch Check Command (Claims Check Form or Availability Check Form).

13.15.5.1 Launch Extension Packages

The Launch Extension consists of sub-packages of the SDK packages and class additions to
existing SDK packages. The following table provides an overview of the Launch Extension
packages.

Package Description

com.verisign.epp.codec.launch ~ Launch Extension EPP Encoder/Decoder package. All of the
detail of encoding and decoding the Launch Extension EPP
messages are encapsulated in this package. The
com.verisign.epp.codec.launch. EPPLaunchExtFactory must
be added to the EPP.CmdRspExtensions configuration

parameter.

com.verisign.epp.interfaces Addition of the EPPLaunch Client Interface class, which
provides a simplified interface for sending the Claims Check
Command.

com.verisign.epp.serverstub Addition of the

com.verisign.epp.serverstub.LaunchDomainHandler class and
the com.verisign.epp.serverstub.LaunchPollHandler used to
implement the EPP Launch Stub Server behavior. The
com.verisign.epp.serverstub.LaunchDomainHandler class
must be added to the EPP.ServerEventHandlers configuration
parameter and the
com.verisign.epp.serverstub.LaunchPollHandler class must
be added to the EPP.PollHandlers configuration parameter to
simulate a server that supports the Launch Extension.

13.15.5.2 Launch XML Schema Files

The Launch Extension is defined using an XML schema file and is dependent on a set of XML
schema files. These files are located in the epp-verisign-bundle-{$SBUILD VER}.jar in the
schemas directory. You must un-jar the jar file in order to explicitly view them.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 181

File Name Location Description

launch-1.0.xsd schemas Launch Extension XML Schema. This XML
Schema is dependent on the mark-1.0.xsd and the
signedMark-1.0.xsd.

mark-1.0.xsd schemas Trademark definition XML Schema.
signedMark- schemas Signed Mark and Encoded Signed Mark XML
1.0.xsd Schema. This XML Schema is dependent on

mark-1.0.xsd and xmldsig-core-schema.xsd.
xmldsig-core- schemas XML Signature (xmldsig) XML Schema.
schema.xsd

13.15.5.3 Launch Client Interface

The Launch Extension is an extension to the Domain Object and so the Domain Client Interface
classes that include com.verisign.epp.interfaces. EPPDomain and
com.verisign.epp.namestore.interfaces. NSDomain are used along with the Launch Extension
specific com.verisign.epp.interfaces. EPPLaunch class for the Claims Check Command. A set of
examples is provided for various Launch Extension cases in the following sections.

13.15.5.3.1 sendCheck() Method

The Launch Extension includes two forms of the Check Command, which include the Claims
Check Form and the Availability Check Form. Both forms may be handled using the
com.verisign.epp.interfaces. EPPLaunch.sendCheck() method.

“Figure 22 - Launch Claims Check Example” shows an example of executing a Launch
Extension Claims Check Command using the
com.verisign.epp.interfaces. EPPLaunch.sendCheck() method.

Figure 22 - Launch Claims Check Example

EPPResponse response;

try {
EPPLaunch launch = new EPPLaunch (session) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 182

launch.setTransId ("ABC-12345");
launch.addDomainName (Yexamplel.tld”) ;
launch.setPhase (EPPLaunch.PHASE CLAIMS) ;

response = launch.sendCheck() ;
if (response.hasExtension (EPPLaunchChkData.class)) {
EPPLaunchChkData ext = (EPPLaunchChkData)

response.getExtension (EPPLaunchChkData.class) ;

List<EPPLaunchCheckResult> results = ext.getCheckResults();
for (EPPLaunchCheckResult result : results) {

if (result.isExists()) {
System.out.println (result.getName () + “, mark
exists, claimsKey = [“ + result.getClaimKey () + “1”);
}
else {
System.out.println (result.getName () + “, mark DOES NOT

exist”);

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

“Figure 23 - Launch Availability Check Example” shows an example of executing a Launch
Extension Availability Check Command using the

com.verisign.epp.interfaces. EPPLaunch.sendCheck() method for the custom “idn-releases”
phase.

Figure 23 - Launch Availability Check Example

EPPDomainCheckResp response;

try {
EPPLaunch launch = new EPPLaunch (session) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 183

launch.setTransId ("ABC-12345");
launch.addDomainName (Yexamplel.tld”) ;
launch.setPhase (EPPLaunch.PHASE CUSTOM) ;
launch.setPhaseName (“idn-release”) ;
launch.setType (EPPLaunch. TYPE AVAT LABILITY) ;

response = (EPPDomainCheckResp) launch.sendCheck() ;
System.out.println (“Launch Availability Response = [“ + response +
\\]//);

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

13.15.53.2 sendInfo() Method

The Launch Extension utilizes the com.verisign.epp.interfaces. EPPDomain.sendInfo() method,
that is extended by the com.verisign.epp.namestore.interfaces. NSDomain class, to send a
Domain Info Command with the Launch Extension.

“Figure 24 — Domain Info for Launch Application Example” shows an example of executing a
Domain Info Command for a Sunrise Application with the Application Identifier of “abc123”.

Figure 24 — Domain Info for Launch Application Example

EPPDomainInfoResp response;

try {
NSDomain domain = new NSDomain (session) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 184

domain.setTransId ("ABC-12345") ;
domain.addDomainName (Yexamplel.t1ld”) ;

domain.addExtension (new EPPLaunchInfo (new
EPPLaunchPhase (EPPLaunchPhase.PHASE SUNRISE), “abcl23”));

response = domain.sendInfo();
if (response.hasExtension (EPPLaunchInfData.class)) {

EPPLaunchInfData ext =
response.getExtension (EPPLaunchInfData.class) ;

System.out.println (“Phase = “ + ext.getPhase () .getPhase());

System.out.println (“Id = “ + ext.getApplicationId()) ;

System.out.println (“Status = “ + ext.getStatus () .getStatus());
(

System.out.println (“™Mark = “ + ext.getMark());

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

“Figure 25 — Domain Info for Launch Registration Example” shows an example of executing a
Domain Info Command for a Sunrise Registration.

Figure 25 — Domain Info for Launch Registration Example

EPPDomainInfoResp response;

try {
NSDomain domain = new NSDomain (session) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 185

domain.setTransId ("ABC-12345") ;
domain.addDomainName (Yexamplel.t1ld”) ;

EPPLaunchInfo infExt = new EPPLaunchInfo (new
EPPLaunchPhase (EPPLaunchPhase.PHASE SUNRISE)) ;
infExt.setIncludeMark (true) ;

domain.addExtension (infExt) ;
response = domain.sendInfo () ;

if (response.hasExtension (EPPLaunchInfData.class)) {
EPPLaunchInfData ext =
response.getExtension (EPPLaunchInfData.class) ;
System.out.println (“Phase = “ + ext.getPhase () .getPhase());
System.out.println (“Mark = “ + ext.getMark());

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

13.15.53.3 sendCreate() Method

The Launch Extension utilizes the com.verisign.epp.interfaces. EPPDomain.sendCreate()
method, that is extended by the com.verisign.epp.namestore.interfaces. NSDomain class, to send
a Domain Create Command with the Launch Extension. The Launch Extension supports all four
forms (Sunrise Create Form, Claims Create Form, General Create Form, Mix Create Form).

“Figure 26 — Domain Create in Sunrise Create Form Example” shows an example of executing a
Domain Create Command for a Sunrise Application with an Encoded Signed Mark.

Figure 26 — Domain Create in Sunrise Create Form Example

EPPResponse response;

try {
NSDomain domain = new NSDomain (session) ;

// Define Mark
EPPMark mark = new EPPMark () ;

// Define Issuer
EPPIssuer issuer = new EPPIssuer (“1”, “Example Inc.”,
support@example.tld) ;

// Define Encoded Signed Mark and sign it
EPPEncodedSignedMark signedMark =

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 186

new EPPEncodedSignedMark (“1-2"”, issuer,
new GregorianCalendar (2013, 1, 1).getTime(),
new GregorianCalendar (2014, 1, 1).getTime (),
mark) ;
signedMark.sign (privateKey, certChain);

domain.addExtension (new EPPLaunchCreate (new
EPPLaunchPhase (EPPLaunchPhase.PHASE SUNRISE), signedMark,
EPPLaunchCreate.TYPE APPLICATION)) ;

domain.setTransId ("ABC-12345") ;
domain.addDomainName (Yexamplel.t1ld”) ;
domain.setAuthString (“"ClientX”) ;

response = domain.sendCreate() ;

if (response.hasExtension (EPPLaunchCreData.class)) {
EPPLaunchCreData ext =
response.getExtension (EPPLaunchCreData.class) ;

AN

System.out.println (“Phase = + ext.getPhase () .getPhase());

AN

System.out.println (“Id = + ext.getApplicationId());

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

“Figure 27 — Domain Create in Claims Create Form Example” shows an example of executing a
Domain Create Command for a domain registration with the claims notice information.

Figure 27 — Domain Create in Claims Create Form Example

EPPResponse response;

try {
NSDomain domain = new NSDomain (session) ;

domain.setTransId ("ABC-12345") ;
domain.addDomainName (Yexamplel.t1ld”) ;
domain.setAuthString (“"ClientX”) ;

domain.addExtension (new EPPLaunchCreate (new
EPPLaunchPhase (EPPLaunchPhase.PHASE CLAIMS), new
EPPLaunchNotice (" 9FD46E6C4B45C55D4AC”, new Date (), new Date()),
EPPLaunchCreate.TYPE REGISTRATION) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 187

response = domain.sendCreate() ;

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

“Figure 28 — Domain Create in General Create Form Example” shows an example of executing a
Domain Create Command in General Create Form to explicitly specify the phase and the type of
object to create.

Figure 28 — Domain Create in General Create Form Example

EPPResponse response;

try {
NSDomain domain = new NSDomain (session) ;

domain.setTransId ("ABC-12345") ;
domain.addDomainName (Yexamplel.tld”) ;
domain.setAuthString (“"ClientX”) ;

domain.addExtension (new EPPLaunchCreate (new
EPPLaunchPhase (EPPLaunchPhase.PHASE LANDRUSH) ,
EPPLaunchCreate.TYPE APPLICATION) ;

response = domain.sendCreate() ;

if (response.hasExtension (EPPLaunchCreData.class)) {
EPPLaunchCreData ext =
response.getExtension (EPPLaunchCreData.class) ;

AN

System.out.println (“Phase = + ext.getPhase () .getPhase()) ;

AN

System.out.println (“Id = + ext.getApplicationId());

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

“Figure 29 — Domain Create in Mix Create Form Example” shows an example of executing a
Domain Create Command in Mix Create Form to create a non-TMCH sunrise application with a
mark.

Figure 29 — Domain Create in Mix Create Form Example

EPPResponse response;

try {
NSDomain domain = new NSDomain (session) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 188

// Define Mark
EPPMark mark = new EPPMark () ;

domain.setTransId ("ABC-12345") ;
domain.addDomainName (Yexamplel.tld”) ;
domain.setAuthString (“"ClientX”) ;

EPPLaunchCreate creExt = new EPPLaunchCreate (new
EPPLaunchPhase (EPPLaunchPhase.CUSTOM, “non-tmch-sunrise”),
EPPLaunchCreate.TYPE APPLICATION) ;

crekExt.addCodeMark (EPPLaunchCodeMark (mark)) ;

creExt.setNotice (new EPPLaunchNotice (Y“49FD46E6C4B45C55D4AC”, new
Date (), new Date())

domain.addExtension (crekExt) ;

response = domain.sendCreate() ;

if (response.hasExtension (EPPLaunchCreData.class)) {
EPPLaunchCreData ext =
response.getExtension (EPPLaunchCreData.class) ;
System.out.println (“Phase = “ + ext.getPhase () .getPhase());
System.out.println (“Id = “ + ext.getApplicationId()) ;

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

13.15.534 sendUpdate() Method

The Launch Extension utilizes the com.verisign.epp.interfaces. EPPDomain.sendUpdate()
method, that is extended by the com.verisign.epp.namestore.interfaces. NSDomain class, to send
a Domain Update Command with the Launch Extension. The Launch Extension enables a client
to update a launch application referenced by the Application Id returned in the Domain Create
Response. “Figure 30 — Domain Update of Sunrise Application Example” shows an example of
updating a sunrise application.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 189

Figure 30 — Domain Update of Sunrise Application Example

EPPResponse response;

try {
NSDomain domain = new NSDomain (session) ;

domain.setTransId ("ABC-12345") ;
domain.addDomainName (Yexamplel.tld”) ;

domain.setUpdateAttrib (EPPDomain.HOST, "ns2.example.tld",
EPPDomain.ADD) ;

domain.setUpdateAttrib (EPPDomain.HOST, "nsl.example.tld",
EPPDomain.REMOVE) ;

// Add extension
domain.addExtension (new EPPLaunchUpdate (new EPPLaunchPhase (
EPPLaunchPhase.PHASE SUNRISE), "abcl23"));

response = domain.sendUpdate () ;

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

13.15.5.3.5 sendDelete() Method

The Launch Extension utilizes the com.verisign.epp.interfaces. EPPDomain.sendDelete()
method, that is extended by the com.verisign.epp.namestore.interfaces. NSDomain class, to send
a Domain Delete Command with the Launch Extension. The Launch Extension enables a client
to delete a launch application referenced by the Application Id returned in the Domain Create
Response. “Figure 30 — Domain Update of Sunrise Application Example” shows an example of
updating a sunrise application.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 190

Figure 31 — Domain Delete of Sunrise Application Example

EPPResponse response;

try {
NSDomain domain = new NSDomain (session) ;

domain.setTransId ("ABC-12345") ;

// Add extension
domain.addExtension (new EPPLaunchDelete (new EPPLaunchPhase (
EPPLaunchPhase.PHASE SUNRISE), "abcl23"));

response = domain.sendDelete () ;

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide

e page 191

13.15.6 PersReg Extension

The Personal Registration Extension defined in “Extensible Provisioning Protocol Extension
Mapping: <Personal Registration>" includes extensions to the create (Domain, Email
Forwarding, and Defensive Registration) response, an extension to the info (Domain, Email
Forwarding) response, and an extension to the create (Domain, Email Forwarding) command to
pass a consent identifier to authorize the create with a conflicting Defensive Registration.

13.15.6.1 PersReg Extension Packages

The Personal Registration Extension consists of sub-packages of the SDK packages and class
additions to existing SDK packages. The following table provides an overview of the Personal
Registration Extension packages.

Package Description

com.verisign.epp.codec.persreg Personal Registration Extension EPP Encoder/Decoder
package. All of the detail of encoding and decoding the
Personal Registration Extension EPP messages are
encapsulated in this package. The
com.verisign.epp.codec.persreg. EPPPersRegExtFactory must
be added to the EPP.CmdRspExtensions configuration
parameter.

com.verisign.epp.interfaces Includes the com.verisign.epp.interfaces. EPPPersRegTst test
class for sending the Personal Registration Extension on a
Domain and Email Forwarding create and receiving responses
with the Personal Registration Extension.

com.verisign.epp.serverstub Addition of the
com.verisign.epp.serverstub.PersRegDomainHandler class
and the
com.verisign.epp.serverstub. PersRegEmailFwdHandler used
to implement the EPP Personal Registration Stub Server
behavior. These classes must be added to the
EPP.ServerEventHandlers configuration to simulate a server
that supports the Personal Registration Extension.

13.15.6.2 PersReg XML Schema Files

The Personal Registration Extension is defined using an XML schema file and is dependent on a
set of XML schema files. These files are located in the epp-verisign-bundle-{SBUILD VER}.jar
in the schemas directory. You must un-jar the jar file in order to explicitly view them.

File Name Location Description

persReg-1.0.xsd schemas Personal Registration Extension XML Schema

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 192

13.15.6.3 PersReg Client Interface

The Personal Registration Extension is an extension to the Domain and Email Forwarding
objects, so the Domain (com.verisign.epp.interfaces. EPPDomain) and Email Forwarding
(com.verisign.epp.interfaces. EPPEmailFwd) Client Interface classes are used with the Personal
Registration Extension.

“Figure 32 — Personal Registration Create with Consent Example” shows an example of
executing a Domain Create Command with consent using the Personal Registration Create
Extension com.verisign.epp.codec.persreg. EPPPersRegCreate class.

Figure 32 — Personal Registration Create with Consent Example

EPPDomainCreateResp response;

try {
EPPDomain domain = new EPPDomain (session) ;

domain.setTransId ("ABC-12345") ;
domain.addDomainName (Yexamplel.tld”) ;

domain.addExtension (new EPPPersRegCreate (“ID:12345")) ;
response = domain.sendCreate() ;

if (response.hasExtension (EPPPersRegCreateData.class)) {
EPPPersRegCreateData ext = (EPPPersRegCreateData)
response.getExtension (EPPPersRegCreateData.class) ;
Sytem.out.println (“bundle rate = “ + ext.isBundleRate()) ;
}

}
catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
if (errorResponse.hasExtension (EPPPersRegCreateErrData.class)) {
EPPPersRegCreateErrData ext = (EPPPersRegCreateErrData)
errorResponse.getExtension (EPPPersRegCreateErrData.class) ;
System.out.println (“PersReg error = “ + ext);

}
Assert.fail (e.getMessage()) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 193

13.15.7 Related Domain Extension

The Related Domain Extension defined in “Extensible Provisioning Protocol Extension
Mapping: <Related Domain>" includes an extension to the domain name mapping for managing
client-side and server-side domain name relationships.

13.15.7.1 Related Domain Extension Packages

The Related Domain Extension consists of sub-packages of the SDK packages and class
additions to existing SDK packages. The following table provides an overview of the Related
Domain Extension packages.

Package Description

com.verisign.epp.codec.relatedd Related Domain Extension EPP Encoder/Decoder package.
omainext All of the detail of encoding and decoding the Related
Domain Extension EPP messages are encapsulated in this
package. The
com.verisign.epp.codec.relateddomainext. EPPRelatedDomain
ExtFactory must be added to the EPP.CmdRspExtensions
configuration parameter.

com.verisign.epp.interfaces Includes the com.verisign.epp.interfaces. EPPRelatedDomain
class to send both forms of the info command (Domain Info
Form and Related Info Form) and the multiple related domain
transform commands (Create, Update, Delete, Renew, and
Transfer), and
com.verisign.epp.interfaces. EPPRelatedDomainTst test class
for testing the
com.verisign.epp.interfaces. EPPRelatedDomain class.

com.verisign.epp.serverstub Addition of the
com.verisign.epp.serverstub.RelatedDomainHandler class
used to implement the EPP Related Domain Stub Server
behavior. These classes must be added to the
EPP.ServerEventHandlers configuration to simulate a server
that supports the Related Domain Extension.

13.15.7.2 Related Domain XML Schema Files

The Related Domain Extension is defined using an XML schema file and is dependent on a set
of XML schema files. These files are located in the epp-verisign-bundle-{SBUILD VER}.jar in
the schemas directory. You must un-jar the jar file in order to explicitly view them.

File Name Location Description
relatedDomain- schemas Related Domain Extension XML Schema
1.0.xsd

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 194

13.15.7.3 Related Domain Client Interface

The Related Domain Extension is an extension to the Domain object, so the
com.verisign.epp.interfaces. EPPRelatedDomain class extends the

com.verisign.epp.interfaces. EPDomain, and is a superclass of the
com.verisign.epp.namestore.interfaces. NSDomain class. The

com.verisign.epp.interfaces. EPPRelatedDomain Client Interface class methods can be used to
send the info command with the two types / forms (EPPRelatedDomain. TYPE _DOMAIN for the
Domain Info Form and EPPRelatedDomain. TYPE RELATED for the Related Info Form) or the
multiple related domain transform commands (create, update, delete, renew, and transfer). The
EPPRelatedDomain.sendRelatedInfo() : EPPResponse is used to get the
com.verisign.epp.codec.domain. EPPDomainInfoResp, for the Domain Info Form, and the
com.verisign.epp.codec.gen. EPPResponse, for the Related Info Form, with the
com.verisign.epp.codec.relateddomainext. EPPRelatedDomainExtInfoData extension.

“Figure 33 — Related Domain Info Command in Domain Info Form Example” shows an example
of executing a Domain Info Command in the Domain Info Form to receive a response that
includes the Related the domain information for “examplel.tld” along with the related domain
information in the com.verisign.epp.codec.relateddomainext. EPPRelatedDomainExtInfData
class.

Figure 33 — Related Domain Info Command in Domain Info Form Example

EPPDomainInfoResp response;

try {
EPPRelatedDomain relDomain = new EPPRelatedDomain (session) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 195

relDomain.setTransId ("ABC-12345") ;
relDomain.addDomainName (Yexamplel.tld”) ;
relDomain.setInfoForm(EPPRelatedDomain.DOMAIN INFO_ FORM) ;

response = (EPPDomainInfoResp) relDomain.sendRelatedInfo() ;
if (response.hasExtension (EPPRelatedDomainExtInfData.class)) {
EPPRelatedDomainExtInfData ext = (EPPRelatedDomainExtInfData)
response.getExtension (EPPRelatedDomainExtInfData.class) ;
Sytem.out.println (“related domain info = “ + ext);

}

// Get the domain info for examplel.tld
System.out.println (“Domain ROID = “ + response.getRoid())

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

“Figure 34 — Related Domain Info Command in Related Info Form Example” shows an example
of executing a Domain Info Command in the Related Info Form to receive a response that
includes the related domain information of “examplel.tld” in the
com.verisign.epp.codec.relateddomainext. EPPRelatedDomainExtInfData class.

Figure 34 — Related Domain Info Command in Related Info Form Example

EPPResponse response;

try {
EPPRelatedDomain relDomain = new EPPRelatedDomain (session) ;
relDomain.setTransId ("ABC-12345") ;
relDomain.addDomainName (Yexamplel.tld”) ;
relDomain.setInfoForm (EPPRelatedDomain.RELATED INFO_ FORM) ;
response = relDomain.sendRelatedInfo() ;
if (response.hasExtension (EPPRelatedDomainExtInfData.class)) {
EPPRelatedDomainExtInfData ext = (EPPRelatedDomainExtInfData)
response.getExtension (EPPRelatedDomainExtInfData.class) ;
Sytem.out.println (“related domain info = “ + ext);

}

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 196

“Figure 35 — Related Domain Create Command Example” shows an example of executing a
Related Domain Create Command to create all of the domains “example.com”, “domainl.com”,
“domain2.com”, and “xn—idn.com” at once.

Figure 35 — Related Domain Create Command Example

EPPDomainCreateResp response;

try {
EPPRelatedDomain relDomain = new EPPRelatedDomain (session) ;

relDomain.setTransId ("ABC-12345") ;
relDomain.addDomainName (“examplel. tld”) ;
relDomain.setAuthString (“"2fooBAR”) ;

EPPRelatedDomainExtAuthInfo authInfo = new
EPPRelatedDomainExtAuthInfo (Y“relDoml23!”) ;
EPPRelatedDomainExtPeriod period = new EPPRelatedDomainExtPeriod (5) ;

relDomain.addRelatedDomain (new

EPPRelatedDomainExtDomain (“domainl.com”, authInfo, period)) ;
relDomain.addRelatedDomain (new

EPPRelatedDomainExtDomain (“domain2.com”, authInfo, period)) ;
relDomain.addRelatedDomain (new EPPRelatedDomainExtDomain (“xn—idn.com”,

authInfo, period, “CHI”)) ;

response = relDomain.sendRelatedCreate() ;

if (response.hasExtension (EPPRelatedDomainExtCreateResp.class)) {
EPPRelatedDomainExtCreateResp ext =
(EPPRelatedDomainExtCreateResp)
response.getExtension (EPPRelatedDomainExtCreateResp.class) ;
Sytem.out.println (“related domain create = “ + ext);

}

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse();
Assert.fail (e.getMessage()) ;

“Figure 36 — Related Domain Delete Command Example” shows an example of executing a
Related Domain Delete Command to delete all of the domains “example.com”, “domainl.com”,
“domain2.com”, and “xn—idn.com” at once.

Figure 36 — Related Domain Delete Command Example

EPPResponse response;

try {
EPPRelatedDomain relDomain = new EPPRelatedDomain (session) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 197

relDomain.setTransId ("ABC-12345") ;
relDomain.addDomainName (“examplel. tld”) ;

relDomain.addRelatedName (“domainl.com”) ;
relDomain.addRelatedName (“domain2.com”) ;
relDomain.addRelatedName (“xn--idn.com”) ;

response = relDomain.sendRelatedDelete() ;

if (response.hasExtension (EPPRelatedDomainExtDeleteResp.class)) {
EPPRelatedDomainExtDeleteResp ext =
(EPPRelatedDomainExtDeleteResp)
response.getExtension (EPPRelatedDomainExtDeleteResp.class) ;
Sytem.out.println (“related domain delete = “ + ext);

}

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

“Figure 37 — Related Domain Update Command Example” shows an example of executing a
Related Domain Update Command to update all of the domains “example.com”,
“domainl.com”, “domain2.com”, and “xn—idn.com” by adding the clientHold status.

Figure 37 — Related Domain Update Command Example

EPPResponse response;

try {
EPPRelatedDomain relDomain = new EPPRelatedDomain (session) ;

relDomain.setTransId ("ABC-12345") ;
relDomain.addDomainName (“examplel. tld”) ;

relDomain.addRelatedName (“domainl.com”) ;
relDomain.addRelatedName (“domain2.com”) ;
relDomain.addRelatedName (“xn--idn.com”) ;

relDomain.setUpdateAttrib (EPPDomain.STATUS, new
EPPDomainStatus (EPPDomain.STATUS CLIENT HOLD, EPPDomain.ADD) ;

response = relDomain.sendRelatedUpdate() ;

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 198

“Figure 38 — Related Domain Renew Command Example” shows an example of executing a
Related Domain Renew Command to renew all of the domains “example.com”, “domainl.com”,
“domain2.com”, and “xn—idn.com” for 5 years.

Figure 38 — Related Domain Renew Command Example

EPPDomainRenewResp response;

try {
EPPRelatedDomain relDomain = new EPPRelatedDomain (session) ;

Date currExpDate = new GregorianCalendar (2013, 9, 10) .getTime () ;

relDomain.setTransId ("ABC-12345") ;
relDomain.addDomainName (“examplel. tld”) ;

relDomain.setPeriodLength (5) ;
EPPRelatedDomainExtPeriod period = new EPPRelatedDomainExtPeriod (5) ;

relDomain.addRelatedDomain (new
EPPRelatedDomainExtDomain (“domainl.com”, currExpDate, period)) ;

relDomain.addRelatedDomain (new
EPPRelatedDomainExtDomain (“domain2.com”, currExpDate, period)) ;

relDomain.addRelatedDomain (new
EPPRelatedDomainExtDomain (“xn—idn.com”, currExpDate, period)) ;

response = relDomain.sendRelatedRenew () ;

if (response.hasExtension (EPPRelatedDomainExtRenewResp.class)) {
EPPRelatedDomainExtRenewResp ext =
(EPPRelatedDomainExtRenewResp)
response.getExtension (EPPRelatedDomainExtRenewResp.class) ;
Sytem.out.println (“related domain renew = “ + ext);

}

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

“Figure 39 — Related Domain Transfer Command Example” shows an example of executing a
Related Domain Transfer Command to request transfer of all the domains “example.com”,
“domainl.com”, “domain2.com”, and “xn—idn.com”.

Figure 39 — Related Domain Transfer Command Example

EPPResponse response;

try {
EPPRelatedDomain relDomain = new EPPRelatedDomain (session) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 199

relDomain.setTransId ("ABC-12345") ;
relDomain.addDomainName (“examplel. tld”) ;

relDomain.setTransferOpCode (EPPDomain.TRANSFER REQUEST) ;
relDomain.setAuthString (“2fooBAR”) ;
relDomain.setPeriodLength (1) ;

EPPRelatedDomainExtPeriod period = new EPPRelatedDomainExtPeriod (1) ;
EPPRelatedDomainExtAuthInfo authInfo = new
EPPRelatedDomainExtAuthInfo (Y“relDoml23!”) ;

relDomain.addRelatedDomain (new
EPPRelatedDomainExtDomain (“domainl.com”, authInfo, period)) ;

relDomain.addRelatedDomain (new
EPPRelatedDomainExtDomain (“domain2.com”, authInfo, period)) ;

relDomain.addRelatedDomain (new
EPPRelatedDomainExtDomain (“xn—idn.com”, authInfo, period)) ;

response = relDomain.sendRelatedTransfer () ;

if (response.hasExtension (EPPRelatedDomainExtTransferResp.class)) {
EPPRelatedDomainExtTransferResp ext =
(EPPRelatedDomainExtTransferResp)
response.getExtension (EPPRelatedDomainExtTransferResp.class) ;
Sytem.out.println (“related domain transfer = “ + ext);

}

}

catch (EPPCommandException e) {
EPPResponse errorResponse = e.getResponse() ;
Assert.fail (e.getMessage()) ;

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 200

13.15.8 Change Poll Extension

The Change Poll Extension defined in “Change Poll Extension for the Extensible Provisioning
Protocol (EPP)” includes an extension to any object mapping for notifying clients of operations
on client sponsored objects that were not initiated by the client through EPP.

13.15.8.1 Change Poll Extension Packages

The Change Poll Extension consists of sub-packages of the SDK packages and class additions to
existing SDK packages. The following table provides an overview of the Change Poll Extension
packages.

Package Description

com.verisign.epp.codec.change Change Poll Extension EPP Encoder/Decoder package. All of

poll the detail of encoding and decoding the Change Poll
Extension EPP messages are encapsulated in this package.
The

com.verisign.epp.codec.changepoll. EPPChangePollExtFactor
y must be added to the EPP.CmdRspExtensions configuration
parameter.

com.verisign.epp.interfaces Includes
com.verisign.epp.interfaces. EPPChangePollDomainTst test
class for testing the Change Poll Extension against the Stub
Server.

com.verisign.epp.serverstub Addition of the
com.verisign.epp.serverstub. ChangePollDomainHandler class
used to implement the EPP Change Poll Domain Stub Server
behavior. These classes must be added to the
EPP.ServerEventHandlers configuration to simulate a server
that supports the Change Poll Extension for domain objects.

13.15.8.2 Change Poll Extension XML Schema Files

The Change Poll Extension is defined using an XML schema file and is dependent on a set of
XML schema files. These files are located in the epp-verisign-bundle-{SBUILD VER}.jar in the
schemas directory. You must un-jar the jar file in order to explicitly view them.

File Name Location Description
changePoll- schemas Change Poll Extension XML Schema
1.0.xsd

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 201

13.15.9 Registry Fee Extension

The Registry Fee Extension defined in “Registry Fee Extension for the Extensible Provisioning
Protocol (EPP)” that provides a mechanism by which EPP clients may query the fees and credits
associated with various billable transactions and alos obtain their current account balance.

13.15.9.1 Registry Fee Extension Packages

The Registry Fee Extension consists of sub-packages of the SDK packages and class additions to
existing SDK packages. The following table provides an overview of the Registry Fee Extension
packages.

Package Description

com.verisign.epp.codec.fee Registry Fee Extension EPP Encoder/Decoder package. All
of the detail of encoding and decoding the Registry Fee EPP
messages are encapsulated in this package.

The com.verisign.epp.codec.fee.vi 0.EPFeeExtFactory must
be added to the EPP.CmdRspExtensions configuration
parameter to support REC 8748.

com.verisign.epp.interfaces Includes com.verisign.epp.interfaces.vi 0.EPPFeeDomainTst
test class for testing the Registry Fee Extension against the
Stub Server to support RFC 8748.

com.verisign.epp.serverstub Addition of the
com.verisign.epp.serverstub.FeeDomainHandler class used to
implement the EPP Registry Fee Domain Stub Server
behavior to support REC 8748. These classes must be added
to the EPP.ServerEventHandlers configuration to simulate a
server that supports the Registry Fee Extension.

13.15.9.2 Registry Fee Extension XML Schema Files
The Registry Fee Extension is defined using an XML schema file and is dependent on a set of

XML schema files. These files are located in the epp-verisign-bundle-{SBUILD VER}.jar in the
schemas directory. You must un-jar the jar file in order to explicitly view them.

File Name Location Description

fee-1.0.xsd schemas RFC 8748 Registry Fee Extension XML Schema

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 202

13.15.10 Allocation Token Extension

The Allocation Token Extension defined in “Allocation Token Extension for the Extensible
Provisioning Protocol (EPP)” that is used to support including an allocation token or code for
allocating an object like a domain name to the client.

13.15.10.1 Allocation Token Extension Packages

The Allocation Token Extension consists of sub-packages of the SDK packages and class
additions to existing SDK packages. The following table provides an overview of the Allocation
Token Extension packages.

Package Description

com.verisign.epp.codec.allocati ~ Allocation Token Extension EPP Encoder/Decoder package.
ontoken All of the detail of encoding and decoding the Allocation
Token EPP messages are encapsulated in this package.

com.verisign.epp.interfaces Includes
com.verisign.epp.interfaces. EPPAllocationTokenDomainTst
test class for testing the Allocation Token Extension against
the Stub Server.

com.verisign.epp.serverstub Addition of the
com.verisign.epp.serverstub.AllocationTokenDomainHandler
class used to implement the EPP Allocation Token Domain
Stub Server. These classes must be added to the
EPP.ServerEventHandlers configuration to simulate a server
that supports the Allocation Token Extension.

13.15.10.2 Allocation Token Extension XML Schema Files

The Allocation Token Extension is defined using an XML schema file and is dependent on a set
of XML schema files. These files are located in the epp-verisign-bundle-{$SBUILD VER}.jar in
the schemas directory. You must un-jar the jar file in order to explicitly view them.

File Name Location Description
allocationToken schemas Allocation Token Extension XML Schema
-1.0.xsd

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 203

13.15.11 IDN Map Extension

The IDN Map Extension defined in “Internationalized Domain Name Mapping Extension for the
Extensible Provisioning Protocol (EPP)” that is used to pass the Internationized Domain Name
(IDN) table identifier for IDN domain names.

13.15.11.1 IDN Map Extension Packages

The IDN Map Extension consists of sub-packages of the SDK packages and class additions to
existing SDK packages. The following table provides an overview of the IDN Map Extension
packages.

Package Description

com.verisign.epp.codec.idnmap IDN Map Extension EPP Encoder/Decoder package. All of
the detail of encoding and decoding the IDN Map EPP
messages are encapsulated in this package.

com.verisign.epp.interfaces Includes com.verisign.epp.interfaces. EPPldnMapDomainTst
test class for testing the IDN Map Extension against the Stub
Server.

com.verisign.epp.serverstub Addition of the

com.verisign.epp.serverstub.IdnMapDomainHandler class
used to implement the EPP IDN Map Domain Stub Server.
These classes must be added to the EPP.ServerEventHandlers
configuration to simulate a server that supports the IDN Map
Extension.

13.15.11.2 IDN Map Extension XML Schema Files
The IDN Map Extension is defined using an XML schema file and is dependent on a set of XML

schema files. These files are located in the epp-verisign-bundle-{$SBUILD VER}.jar in the
schemas directory. You must un-jar the jar file in order to explicitly view them.

File Name Location Description

idn-1.0.xsd schemas IDN Map Extension XML Schema

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 204

13.15.12 Verification Code Extension

The Verification Code Extension, defined in “Verification Code Extension for the Extensible
Provisioning Protocol (EPP)”, provides support for including a verification code for makring the
data for a transform command as being verified by a 3™ party, which is referred to as the
Verification Service Provider (VSP). The verification code is digitally signed by the VSP using
XML Signature and is “base64” encoded”. The extension also supports an extension to the info
command and response to receive the verification compliance status of the domain name along
with the relavant information like the verification codes that have been set and the verification
codes that are missing.

13.15.12.1 Verification Code Extension Packages

The Verification Code Extension consists of sub-packages of the SDK packages and class
additions to existing SDK packages. The following table provides an overview of the
Verification Code Extension packages.

Package Description

com.verisign.epp.codec.verificat Verification Code Extension EPP Encoder/Decoder package.
ioncode All of the detail of encoding and decoding the Verification
Code EPP messages are encapsulated in this package.

com.verisign.epp.interfaces Includes
com.verisign.epp.interfaces. EPPVerificationCodeDomainTst
test class for testing the Verification Code Extension against
the Stub Server.

com.verisign.epp.serverstub Addition of the
com.verisign.epp.serverstub.VerificationCodeDomainHandler
class used to implement the EPP Verification Code Domain
Stub Server. These classes must be added to the
EPP.ServerEventHandlers configuration to simulate a server
that supports the Verification Code Extension.

13.15.12.2 Verification Code Extension XML Schema Files

The Verification Code Extension is defined using an XML schema file and is dependent on a set
of XML schema files. These files are located in the epp-verisign-bundle-{$SBUILD VER}.jar in
the schemas directory. You must un-jar the jar file in order to explicitly view them.

File Name Location Description
verificationCod schemas Verification Code Extension XML Schema
e-1.0.xsd

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 205

13.15.13 Organization Extension

The Organization Extension, defined in “Organization Extension for the Extensible Provisioning
Protocol (EPP)”, provides support for assigning a organization with a role to existing object
(domain, host, contact) as well as any future objects.

13.15.13.1 Organization Extension Packages

The Organization Extension consists of sub-packages of the SDK packages and class additions to
existing SDK packages. The following table provides an overview of the Organization
Extension packages.

Package Description

com.verisign.epp.codec.orgext Organization Extension EPP Encoder/Decoder package. All
of the detail of encoding and decoding the Organization
Extension EPP messages are encapsulated in this package.

com.verisign.epp.interfaces Includes com.verisign.epp.interfaces. EPPOrgExtDomainTst
test class for testing the Organization Extension against the
Stub Server.

com.verisign.epp.serverstub Addition of the

com.verisign.epp.serverstub.OrgExtDomainHandler class
used to implement the EPP Organization Extension Domain
Stub Server. These classes must be added to the
EPP.ServerEventHandlers configuration to simulate a server
that supports the Organization Extension.

13.15.13.2 Organization Extension XML Schema Files

The Organization Extension is defined using an XML schema file and is dependent on a set of
XML schema files. These files are located in the epp-verisign-bundle-{SBUILD VER}.jar in the
schemas directory. You must un-jar the jar file in order to explicitly view them.

File Name Location Description

orgext-1.0.xsd schemas Organization Extension XML Schema

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 206

13.15.14 Login Security Extension

The Login Security Extension defined in “Login Security for the Extensible Provisioning
Protocol (EPP)” that provides a enhances the security of the EPP connection and login by
supporting passwords creater than 16 characters, supporting the passing of client user agent
information to the server for identifying current and future issues, and supporting the return of
security events (errors and warnings) in the login response for the client to address.

13.15.14.1 Login Security Extension Packages

The Login Security Extension consists of sub-packages of the SDK packages and class additions
to existing SDK packages. The following table provides an overview of the Login Security
Extension packages.

Package Description

com.verisign.epp.codec.loginsec ~ Login Security Extension EPP Encoder/Decoder package.
All of the detail of encoding and decoding the Login
Security EPP messages are encapsulated in this package.

The

com.verisign.epp.codec.fee.vl 0.EPPLoginSecExtFactory
must be added to the EPP.CmdRspExtensions configuration
parameter to support REC 8807.

com.verisign.epp.interfaces Includes com.verisign.epp.interfaces.vi _0.EPPLoginSecTst
test class for testing the Login Security Extension against
the Stub Server to support REC 8807.

com.verisign.epp.serverstub Addition of the
com.verisign.epp.serverstub.LoginSecGenHandler class that
extends the com.verisign.epp.serverstub. GenHandler for
adding support for the Login Security Extension with the
login command and inclusion of the Login Security
Extension in the login response. The LoginSecGenHandler
will route requests to the version specific
LoginSecSubGenHandler. The only version specific
LoginSecSubGenHandler is
com.verisign.epp.serverstub.vl 0.
LoginSecV1 0GenHandler to support RFC 8807. The
com.verisign.epp.serverstub.LoginSecGenHandle class must
be added to the EPP.ServerEventHandlers in place of
com.verisign.epp.serverstub.GenHandler to simulate a
server that supports the different versions of the Login
Security Extension.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 207

13.15.14.2 Login Security Extension XML Schema Files

The Login Security Extension is defined using an XML schema file and is dependent on a set of
XML schema files. These files are located in the epp-verisign-bundle-{SBUILD VER}.jar in the
schemas directory. You must un-jar the jar file in order to explicitly view them.

File Name Location Description
loginSec- schemas RFC 8807 Login Security Extension XML
1.0.xsd Schema

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 208

13.15.15 Launch Policy Extension

The Launch Policy Extension in “Launch Phase Policy Extensions Mapping for the Extensible
Provisioning Protocol (EPP)” is an extension of the Registry Mapping that defines the server
policy of the Launch Phase EPP extension.

13.15.15.1 Launch Policy Extension Packages

The Launch Policy Extension consists of sub-packages of the SDK packages and class additions
to existing SDK packages. The following table provides an overview of the Launch Policy

Extension packages.

Package

com.verisign.epp.codec.launchpol
icy

com.verisign.epp.interfaces

com.verisign.epp.serverstub

Description

Launch Policy Extension EPP Encoder/Decoder package.
All of the detail of encoding and decoding the Login
Security EPP messages are encapsulated in this package.

The

com.verisign.epp.codec.launchpolicy.v0l. EPPLaunchPolicy
ExtFactory must be added to the EPP.CmdRspExtensions
configuration parameter to support draft-gould-regext-
launch-policy-03.

Includes
com.verisign.epp.interfaces.launchpolicy.v0l.EPPLaunchP
olicyTst test class for testing the Launch Policy Extension
against the Stub Server for draft-gould-regext-launch-
policy-03.

For the Launch Policy Extension to be supported by the
Stub Server, the
com.verisign.epp.serverstub.registry.v02.RegistryHandler
or later must be added to the EPP.ServerEventHandlers
configuration parameter, and the desired Launch Policy
Extension adapter must be added to the
EPP.RegistryPolicyAdapters configuration parameter.

The

com.verisign.epp.codec.launchpolicy.v04. EPPLaunchPolicy
Adapter must be added to EPP.RegistryPolicyAdapters
configuration parameter to support draft-gould-regext-
launch-policy-03.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 209

13.15.15.2 Launch Policy Extension XML Schema Files

The Launch Policy Extension is defined using an XML schema file and is dependent on a set of
XML schema files. These files are located in the epp-verisign-bundle-{SBUILD VER}.jar in the
schemas directory. You must un-jar the jar file in order to explicitly view them.

File Name Location Description
launchPolicy- schemas draft-gould-regext-launch-policy-03 Launch
0.4.xsd Policy Extension XML Schema

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 210

13.15.16 Login Security Policy Extension

The Login Security Policy Extension in “Login Security Policy Extensions Mapping for the
Extensible Provisioning Protocol (EPP)” is an extension of the Registry Mapping that defines the
server policy of the Login Security EPP extension.

13.15.16.1 Login Security Policy Extension Packages
The Login Security Policy Extension consists of sub-packages of the SDK packages and class

additions to existing SDK packages.
Security Policy Extension packages.

The following table provides an overview of the Login

Package

com.verisign.epp.codec.loginsecp
olicy

com.verisign.epp.interfaces

com.verisign.epp.serverstub

Description

Login Security Policy Extension EPP Encoder/Decoder

package. All of the detail of encoding and decoding the

Login Security Policy EPP messages are encapsulated in
this package.

The
com.verisign.epp.codec.loginsecpolicy.v04.EPPLoginSecPo
licyExtFactory must be added to the
EPP.CmdRspExtensions configuration parameter to support
draft-gould-regext-login-security-policy-03.

Includes
com.verisign.epp.interfaces.loginsecpolicy.v04.EPPLoginSe
cPolicyTst test class for testing the Login Security Policy
Extension against the Stub Server for draft-gould-regext-
login-security-policy-03.

For the Login Security Policy Extension to be supported by
the Stub Server, the
com.verisign.epp.serverstub.registry.v02.RegistryHandler
or later must be added to the EPP.ServerEventHandlers
configuration parameter, and the desired Login Security
Policy Extension adapter must be added to the
EPP.RegistryPolicyAdapters configuration parameter.

The
com.verisign.epp.codec.loginsecpolicy.v04.EPPLoginSecPo
licyAdapter must be added to EPP.RegistryPolicyAdapters
configuration parameter to support draft-gould-regext-login-
security-policy-03.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 211

13.15.16.2 Login Security Policy Extension XML Schema Files

The Login Security Policy Extension is defined using an XML schema file and is dependent on a
set of XML schema files. These files are located in the epp-verisign-bundle-{SBUILD VER}.jar
in the schemas directory. You must un-jar the jar file in order to explicitly view them.

File Name Location Description
loginSecPolicy- schemas draft-gould-regext-login-security-policy-03 Login
0.4.xsd Security Policy Extension XML Schema

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide ® page 212

13.15.17 Validate Extension

The Validate Extension in “Validate Mapping for the Extensible Provisioning Protocol (EPP)”
describes a mapping for the validation of contact and eligibility data.

13.15.17.1 Validate Extension Packages

The Validate Extension consists of sub-packages of the SDK packages and class additions to
existing SDK packages. The following table provides an overview of the Validate Extension
packages.

Package Description

com.verisign.epp.codec.validate ~ Validate Extension EPP Encoder/Decoder package. All of
the detail of encoding and decoding the Validate EPP
messages are encapsulated in this package.

The

com.verisign.epp.codec.validate.v02. EPPValidateMapFacto
ry must be added to the EPP.MapFactories configuration
parameter to support draft-ietf-regext-validate-04.

com.verisign.epp.interfaces Includes
com.verisign.epp.interfaces.validate.v02. EPPValidateTst
test class for testing the Validate Extension against the Stub
Server for draft-ietf-regext-validate-04.

com.verisign.epp.serverstub For the Validate Extension to be supported by the Stub
Server, the
com.verisign.epp.serverstub.validate.v02.ValidateHandler
or later must be added to the EPP.ServerEventHandlers
configuration parameter.

The
com.verisign.epp.serverstub.validate.v02.ValidateHandler
is used to support draft-ietf-regext-validate-04.

13.15.17.2 Validate Extension XML Schema Files

The Validate Extension is defined using an XML schema file and is dependent on a set of XML
schema files. These files are located in the epp-verisign-bundle-{$SBUILD VER}.jar in the
schemas directory. You must un-jar the jar file in order to explicitly view them.

File Name Location Description
validate-0.2.xsd schemas draft-ietf-regext-validate-04 Validate Extension
XML Schema

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 213

13.15.18 Secure Authorization Information for Transfer Extension

The Secure Authorization Information for Transfer Extension in “Extensible Provisioning
Protocol (EPP) Secure Authorization Information for Transfer” describes a signalling support for

the operational practice in RFC 9154.

13.15.18.1 Secure Authorization Information for Transfer Extension Packages

The Secure Authorization Information for Transfer Extension consists of sub-packages of the
SDK packages and class additions to existing SDK packages. The following table provides an

overview of the extension packages.

Package

com.verisign.epp.codec.secureauthin
fo.vl 0

com.verisign.epp.interfaces.secureau
thinfo.vl 0

com.verisign.epp.serverstub.securea
uthinfo.vl 0

com.verisign.epp.util.secureauthinfo

Description

Secure Authorization Information for Transfer Extension
EPP Encoder/Decoder package. Contains the
EPPSecureAuthlnfoExtFactory class.

The com.verisign.epp.codec.secureauthinfo.vl 0.
EPPSecureAuthlInfoExtFactory must be added to the
EPP.ExtFactories configuration parameter to support
RFC 9154.

Includes the
com.verisign.epp.interfaces.secureauthinfo.vl 0.EPPSec
ureAuthlnfoTst test class for testing the use of the
operational practice in RFC 9154 against the Stub Server.

For the Secure Authorization Information for Transfer
Extension to be supported by the Stub Server, the
com.verisign.epp.serverstub.secureauthinfo.vl 0.Secure
AuthInfoDomainHandler and
com.verisign.epp.serverstub.secureauthinfo.vl 0.Secure
AuthInfoContactHandler classes must be added to the
EPP.ServerEventHandlers configuration parameter.

Includes the utility class EPPAuthlInfoFactory, which can
create a secure random authorization information value.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 214

13.15.19 Use of Internationalized Email Addresses Extension

The Use of Internationalized Email Addresses in the Extensible Provisioning Protocol (EPP)
describes a functional extension to support Internationalized Email Addresses in the EPP
protocol.

13.15.19.1 Use of Internationalized Email Addresses Extension Packages

The Use of Internationalized Email Addresses Extension consists of sub-packages of the SDK
packages and class additions to existing SDK packages. The following table provides an
overview of the extension packages.

Package Description

com.verisign.epp.codec.addlemail Use of Internationalized Email Addresses Extension
EPP Encoder/Decoder package. Contains the
EPPAddIEmailExtFactory class.

The com.verisign.epp.codec.addlemail.
EPPAddIEmailExtFactory must be added to the
EPP.ExtFactories configuration parameter to support
draft-ietf-regext-epp-eai.

com.verisign.epp.interfaces. Includes the

addlemail com.verisign.epp.interfaces.addlemail. EPPAddIEmailTs
t test class for testing the use of the functional extension
in draft-ietf-regext-epp-eai against the Stub Server.

com.verisign.epp.serverstub. For the Use of Internationalized Email Addresses

addlemail Extension to be supported by the Stub Server, the
com.verisign.epp.serverstub.addlemail. AddIEmailConta
ctHandler class must be added to the
EPP.ServerEventHandlers configuration parameter.

VeriSign Inc. Proprietary Information
Verisign Bundle EPP SDK Programmer's Guide e page 215

13.15.20 TTL Extension

The EPP mapping for DNS Time-To-Live (TTL) values describes a functional extension to

support TTL extension in the EPP protocol.

13.15.20.1 TTL Extension Packages

The TTL Extension consists of sub-packages of the SDK packages and class additions to existing
SDK packages. The following table provides an overview of the extension packages.

Package

com.verisign.epp.codec.ttl.vl 0

com.verisign.epp.interfaces.ttl.vl 0

com.verisign.epp.serverstub.ttl.vl 0

Description

Use of TTL Extension EPP Encoder/Decoder package.
Contains the EPPTtIExtFactory class.

The com.verisign.epp.codec.ttl.vl 0.EPPTtIExtFactory
must be added to the EPP. ExtFactories configuration
parameter to support draft-ietf-regext-epp-ttl.

Includes the

com.verisign.epp.interfaces.ttl.vl 0.EPPTtlTst test class
for testing the use of the functional extension in draft-
ietf-regext-epp-ttl against the Stub Server.

For the TTL Extension to be supported by the Stub
Server, the com.verisign.epp.serverstub.ttl.vi 0.
TtlV1_0DomainHandler class
com.verisign.epp.serverstub.ttl.vi 0.

TtlV1 _OHostHandler class must be added to the
EPP.ServerEventHandlers configuration parameter.

VeriSign Inc. Proprietary Information

Verisign Bundle EPP SDK Programmer's Guide

e page 216

